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Whoever undertakes to set himself up as judge in
the field of Truth and Knowledge is shipwrecked by
the laughter of the gods.

Einstein
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Until the past decade the term \‘system

NOT
Becedins Fpe BLI ~ pmed

Preface

4 a5 used in the many disciplines of
science and engineering conveyed a variety of meaning. Since the early 1960’s
theorists have been folding these varied impressions into the single, formidable
conceptual framework of linear system theory. The discussions of this volume
are intended to lend to this unification. Specifically, the intent is to draw on the
conceptual ideas that are common to linear filters, linear time-invariant systems,
Markov chains and quantum theory and present, in a non-rigorous manner, their
respective similarities.

Chapter 1 deals with the fundamental concepts upon which the definition
of a system can be established. Such notions as ordered pairs, oriented abstract
objects, etc., serve as the basics of the definition. The system response is defined
in terms of an input-output-state relationship which must satisfy certain con-
sistency conditions.

The system definition of Chapter 1 is built upon in Chapters 2, 3 and 4. In
Chapter 2 the conditions for consistency are re-cast in the form of demon-
strating the separation property inherent in the input-output-state relationship.

v
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In Chapter 3 the state-space representation is formalized for linear differential
systems, and Chapter 4 highlights the canonical form of the state-space represen-
tation, i.e.

x = Ax + Bu

y =Cx + Du

In Chapter § solutions to the canonical equations are presented for a
variety of systems. A natural fall-out of the state-space formulation are the
theoretical concepts of controlability, observability and stability, which are
addressed in Chapter 6.

In the last two chapters the reader is reminded that the linear theory
developed thus far has limited application to real world problems, such as treat-
ing large complex systems. The objective of Chapter 7 is to introduce the idea of
an imprecisely defined (or probabilistic) system. The methods of extracting
signals from noise, both of which are treated as random processes, are discussed
as a means to augment the linear theory. Finally, Chapter 8, which deals with
quantized systems, ends this volume by highlighting the perturbation method for
treating state transition probabilities. It exemplifies the high degree of difficulty
encountered in analyzing statistical systems.
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1
Fundamental Concepts
and Definitions

1.1 INTRODUCTION

Linear system theory is intended as a discipline to provide a unified conceptual
framework for system analysis. In establishing this framework we will introduce
such notions as abstract objects, their measurable attributes, and the mathemati-
cal relations between attributes. These concepts will serve as the primitives of
the theory, although they defy precise definition in unequivocal terms. Our goal
will be to identify a small part of the physical world we intuitively understand
and attempt to evolve a quantitative basis for analysis. The proof of this quanti-
tative understanding will be manifest in our ability to better describe the
behavior of linear differential systems.

We think of a system (in vague terms) as being a collection of things or
objects which somehow are united through interaction or interdependence. More
precisely, we define! a system to be a partially interconnected set of abstract

1. After Zadeh and Desoer, Linear System Theory, McGraw-Hill, New York, 1963, pp. 1-65.
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2 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

objects, which are called the system components. These components may be
oriented or nonoriented; they may be finite or infinite in number; and each of
them may be associated with a finite or infinite number of terminal variables. It
is not intended or expected at this time that the above definition be fully
comprehended by the reader. The terms used to define the system are them-
selves undefined. Rather, the intent here is to set the stage for the discussion to
follow. The remainder of the chapter will be devoted to clarifying and con-
cretizing the concept of a system, and some of its ramifications.

1.2 TIME FUNCTIONS

As a foundation for the sequel our initial goal is to establish the terms of
reference, particularly those addressing time dependent variables. Consider an
object (as yet undefined) which we will label (f, and let u be a measurable
attribute of (f. « can be real or complex. Let it be understood that u is a time
function where time ranges from -o° to o. Let T be a specific subset of time and
¢t an element within T. (Typically, T may be the semi-infinite interval (zo,*],
where ¢ is a particular value of ; or T may be a finite interval [zg,t1 ], etc.) The
time function u defined on the subset 7 will be denoteu simply as u or as
u(tg,t1], where [tg,t1] is the time segment 7. On the other hand u(r) will
denote the value of u at time ¢. Thus, u is meant as ti:c entire set of pairs
{(t,u(r))} for each t in T. In the specific time segment [z(,z;] the function
u[tg,tq] is the totality of pairs {(f,u(z))} with 1o <t<t;. Figure 1.1 further
illustrates what is meant by u[zq,t] and u(z) for real-valued variables.

In general the discussions to follow will involve the set or class of time
functions {u} more so than a single time function u. In the case u may be
regarded as a real or complex variable ranging over {u}. The range of u will be
denoted as R[u]; it is the set of time functions to which u belongs. When u

ultg.ty]

u(l)/

t Time 1) I Time

Figure 1.1 Notation for time functions.
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varies over R[u], the values of u for fixed ¢ vary over a set which is the range of
the variable u(z). The range of u(r) will be denoted by R[u(¢)]. In general
R[u(t)] is independent of ¢. Figure 1.2 further illustrates R [u(¢)] and R [u] for
real-valued variables. The distinction between R[u(f)] and R([u] is that the
former includes the set of real numbers over (-o0,%), whereas the latter includes
a set of time functions.

The discussion for scalar time functions can readily be extended to include
vector (and matrix) functions. In bold face u(z) denotes an n-vector. The range
R" of u(¢) is the space of n-tuples of real numbers whose values are assumed at
time ¢. (The range C” will be used to denote the set of ordered n-tuples where
the elements of u(z) are complex numbers.) We have

u(?) = i()u200),....un(1)) (1.1)

where u; (i =1,...,n) are real or complex numbers and the parameter ¢ identifies
the values of the u; at time ¢.

The vector function u is the totality of pairs {(z,u(z))} for each ¢ in T.
For the specified time interval [7g,f1] the vector u[¢(,?1] consists of the pairs
{(z,u(r))}, where tg <t <ty. In the sequel we will generally denote the vector
function u[tq,¢] simply as u, i.e.,

(u1(to),uz(to),- - -un(to))
u=ultgt1] = SCevoiiiiiiiiiiiiin ) (1.2)

(uy(ty),un(ty),- . upy(ty))

where ¢ and ¢, are the parameters associated with the time segment 7.

u(r) u,(t)) il ul(‘,p Ru] i
Ru(r)]
IR |
Time

Figure 1.2 Notation for range of time functions.
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Typically, the vector u is a vector-valued time function which, (a) may
contain a finite number of delta functions of various orders over a finite interval,
and (b) is piecewise continuous and has piecewise continuous derivatives of
finite orders on every finite interval over which it has no delta functions. Thus, it
will be assumed that R([u(#)] is R” and R(u] is the space of all vector-valued
time functions which are finitely differentiable over the time segments 7.

1.3 OBJECTS, ATTRIBUTES AND TERMINAL RELATIONS

An object can be labeled as either physical % or abstract (f. (Within these cate-
gories we can further classify the objects as either oriented or non-oriented.) By
a physical object it is usually meant a physical device which is associated with a
set of attributes uy,us,u3, ...., where the relations between these attributes
necessarily characterize the object. In effect, an object is a set of variables with a
defined set of relations between them. Specifically, these variables are called the
terminal variables of object (f; the relations between them are the terminal
relations. The characterization of (f by its terminal relations can be written
symbolically as

@ (uy,us,. ..
Q2(uy,uy,....uy) = 0

=
=
N’
I
o

(1.3)

A" (uyuz,....up) =0

where each @/, j=1,2,...,m, represents a relation between the variables u;, i =
1.2,

If an object ( is characterized by terminal relations of form (1.3) and no
distinction is made as to whether the variables are inputs (causes) or outputs
(effects) then (1 is said to be nonoriented. On the other hand, if the variables are
clearly categorized as inputs and outputs (dependent and independent variables),
then ( is said to be oriented.

In keeping with the idea of an oriented object we postulate as the input to

the k-tuple u= (uy,...ug). The elements uy,u3,... are time functions varying
over the interval (¢g,¢). Similarly, we have for the output of ( the m-tuple
Y=1--Vm)

The range of u(t), which is independent of time, constitutes the input
space of the object. The range of the segmented time function u=u(zg,?;) is
the input segment space. It is important to note that R[u] depends on the
parameters tq and ¢; which vary over T In essence, ({ is associated with a family
R[u] generated by the parameters f( and ¢ . The same can be said for the range
of the output vector R[y].
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In principle the relations between the u; and y; can be established by
letting u vary over its allowable range R[u] and observing y. The input-output
relations of (1.3) can be expressed as

@' (uyuz,. . ug,Y1,Y2,---Ym) = 0

............................. (14)
(f'"(“l’“Zan-“k,J’l-}’Zw Ym) =0
or
(uwy) =0
y = (A(u) (1.5)

To illustrate equation (1.5) let the physical object P be an electrical
capacitor. A simple experiment is devised in which the voltage v across the
capacitor is being measured. Let v be designated as the output and the current i
through the capacitor as the input. We have

dv
=L = ¢
a

where Cis a constant. This relation can readily be put in the form of (1.5) as
PGy) =0

Note that in the above equations v is not uniquely defined as a function of i. We
can determine v to within an added constant (constant of integration). Also, the
roles of i and v can be interchanged with no change in formulation or results.

1.4 ORIENTED MODEL

An abstract object (1 that admits to (1.5) is an abstract oriented model of P 1t
can be represented as ({(). Similarly, 9 is a physical realization of ( and can be
represented as P((1).

An abstract oriented model can be formulated to represent every physical
object. However, the converse is not always true, i.e., it is possible to generate
abstract oriented and nonoriented models for which physical realizations are not
possible. (Clearly, an abstract object whose terminal variables, say v| and v;, are
represented by a iclation of the form vy =jvy, where j= +/~1, cannot be
realized.) On the other hand if (f is physically realizable, it can be realized in a
variety of physical forms, 91,95 .... Thus A(9),@P2). ... all represent the
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same abstract object (€. To illustrate this point, consider the straight line motion
of a mass m accelerating along the OX axis. Let P represent the physical mass.
The variable attributes of P are chosen as the force F applied along the axis, the
position x, velocity X and acceleration ¥. Our experiment is to vary F and
observe X. For the abstract oriented model of P, i.e., @(?), we designate the
input-output as u(=F) and y(=X). Thus, the input-output relationship is

a@ = QFx¥) =0
where
F = mx
The corresponding relation for (@) is

P@) = Pl.y) =0

where
u=my

If we start with , where u = my, then 9 is a physical realization of @ with ¥ and
F identified as u and y, respectively. Similarly, & can be realized by a resistor
where the current through the resistor is identified with y and the voltage across
the resistor is identified with u. Other similar physical examples of @ can easily
be identified pointing out the fact that the abstract model @ can be realized in a
variety of physical forms .

To solidify the analytic meaning of an oriented abstract object consider
the observation interval [£g,t1]. Let the vector pair (u,y), where u=u{tg,t;]
and y =y|[¢#g,t1], be an ordered pair of time functions defined on [ #g,#;]. Let
the set {(u,y)} be the family of such pairs generated by varying #g and ¢; over
the time segment T, with 1 > #o. Accordingly, an oriented abstract object @ is
defined! as a family of sets of ordered pairs of time functions {{{u,y)}}. The
generic pair is (u,y). u is the input segment and y is the output segment. (u,y)is
the input-output pair belonging to @ if (u,y) is an element of the set {(u,y)}
for some [?g,t1] in T. Thus, an oriented abstract object can be identified with
the totality of input-output pairs belonging to (.

To ensure that the family of sets {{(u,y)}} is defined in a consistent
manner, we require that all members of {{(u,y)}} satisfy the consistency con-

1. op. cit.
Note: Notationally { } denotes a set (or family). The double {{ }} denotes a family of sets.
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dition. The condition for consistency is that if (u[ to,¢y],y[¢9.21]) is an input-
output pair belonging to (, then any section of the pair within [#g,#;] also
belongs to (. Specifically, for any pair (u[rg,71],y[70,71]) where tg <79 <71,
70 <11 < 11, we require that u[rg,71] = u[tqg,f1] and y[rq,71] = y[zg.21] over
the interval [7g,71].

The sets of all segments of u and y over (#¢,¢;), such that the pair (u,y)
belongs to object ({, are referred to as the input segment space R [u] and output
segment space R[y] , respectively. It is implied that the set {(u,y)} is a subset of
the product space R[u] X R[y]. This relationship between {(u,y)} and R[u] X
R[y] is illustrated in Figure 1.3. Axes aa’ and bb' represent R[u] and R[y],
respectively. The area ABCD represents the product space created by R [u] X
R|[y]. The object area represents {(u,y)}.

As a simple example of an ordered input-output pair belonging to the
abstract object (@ consider the mass object of Section 1.4. The dynamical
behavior of the mass m under the influence of an external force F is described
by the equation

F = m%x
y
4 b B
u,y)
°
a a'
u
{@.n}t—2
FR[u] X R[y]
~ ]
D - c
b

Figure 1.3 Representation of an abstract object.
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Designating the input and output, respectively, as u = F and y = % we have from
equation (1.5)

Qw,y) =0

i
u—mdt

The generic input-output pair (u,y) over the finite time interval (z,;) is the

pair of time functions
1 (!
(u(t).a = f’ u(s)ds)
(i

where t) <t <) and a is a real arbitrary constant (of integration). Such pairs as
(L), (1L,1+0).(1,24¢),...,(£,1+£2/2),(£,2+12[2),..., represent a family of sets
of input-output pairs for the mass object. (For convenience the mass m was
normalized to unity.)

As another example of an oriented abstract object consider a simple feed-
back control system characterized by the dynamic relation

dy
— =ay + bu

ar Y

where a and b are constants. Again, for convenience we will set both constants
equal to unity. Solving for y in terms of u, we have for (u,y) over (¢¢,¢;), where
1o St <ty and a is an arbitrary real constant,

fy
u().e” e + f Oy

to
Importantly, we note that, in both examples cited, to each input segment
u[tg,t1] there corresponds a family of output segments {y[tg,#;] }. The arbi-
trary constants ¢ and « in the examples play the respective role of parameters

generating the families.

In our definition of an object we have required that, for consistency, every
segment of an input-output pair belonging to @ also be an input-output pair
belonging to (1. Clearly, there are segments of input-output pairs which are not

segments of other input-output pairs. For example, consider an object character-
ized by

y=u t =ty tg <0

dy du
dt

dar
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For ¢+ >0 input-output pairs such as (1,3),(4,5),(6,1),..., where u and y are
constants, all satisfy the characterization relationship y = u. However, they are
not pairs defined on the interval t = ¢, g < 0, where (u(z),u(r)) is the generic
form. It is for this reason we define (f as a family of sets of input-output pairs.

In the applications to follow it will be sufficient to restrict our attention
to objects characterized by a single set of input-output pairs defined over the
interval T. Such objects are said to be uniform. Specifically, an object (f is said
to be a uniform oriented object if every input-output pair (u[zg,#,],y[?0.t1])
belonging to (@ is a segment of an input-output pair (u7,yr) defined over 7.
Thus a uniform oriented object can be characterized by a single set of pairs
{(ur,y7)}. If, for example, T = [0,) then ( is characterized by the single set
of ordered pairs {(u[0,%°), y[0,0))} defined over T. For convenience, and
unless otherwise stated in the sequel, we will assume that ( is a uniform oriented
object, and that T = (=0,0).

1.5 NOTION OF STATE

The abstract object has been defined as a relation, i.e., a set of ordered pairs
(u,y) rather than a function where for each u there corresponds a unique y. To a
given u there is associated a set of output y’s. u and each y in the set comprise an
input-output pair belonging to @. Thus, we have departed from the conventional
definitions which identify (@ within a function (or an operator) and associate a
unique output for each input.

The set of distinct y’s associated with a given input u is generated by the
different initial conditions under which u influences @. (These different initial
conditions are equivalent to “initial states.””) One way of associating a unique y
with each u is to attach a distinguishing lable to each pair (u,y). In the discus-
sion to follow this label, which we denote as x(#(), will be called the state of @
at time ¢. The state will span a (state) space, which we will denote as ¥, in such
a way that y will be uniquely determined by u and x(f9). The process of
attaching the state label is called parametrization of the space of input-output
pairs. Essentially, by establishing the state of ( at time f( we separate the past
from the future. We provide that information about the past that is relevant to
determining the response of ( beginning at time #(.

1.6 STATE-INPUT-OUTPUT RELATIONS

There are many ways in which a state vector x(¢p) can be associated with Q.
Therefore the definitions given below will be a set of qualifying conditions
which, if met, allow one to label the state of (f at time # as x(¢).
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For discussion purposes consider the semi-closed interval (#g,f] and the
ordered pair (u(tp.t], y(tg,#]), which is a segment of (uz,y7) defined over T.
Let (@ be characterized over (to,t] by input-output relation (1.5), i.e., by

A(u,y)
y

0
()

(This is equivalent to saying ({ is characterized by the family of sets of ordered
pairs {{(u,y)}}. Let x be a (vector) variable ranging over space W. It is claimed!
that if the spaces of input-output pairs admit to a relation of the form

Y(IOJJ = F(X;u(tﬂ»t]) (16)

which satisfies the four mutual- and self-consistency conditions set forth below,
then (a) equation (1.6) qualifies as an input-output-state relation for (, (b) space
W qualifies as the state-space for (f, where elements of W are the states, and (c)
the variable xg = x(¢g) qualifies as the state of ({ at time t(. Thus, if the cor-
sistency conditions as defined below are satisfied it can be said that (f is com-
pletely characterized by (1.6), where y(#g,t] is the response segment of ( to
input segment u(zg,t] starting in state xg and (u(zg,?],y(zo,t]) is the input-
output pair associated with x(.

The conditions of mutual- and self-consistency which qualify (1.6) as the
input-output-state relation for ( are defined? below.

1.7 CONDITION I, MUTUAL-CONSISTENCY

Every input-output pair for ( satisfies relation (1.6), and conversely. To elabo-
rate, if (u(zg,t], y(o,t]), or simply (u,y), satisfies (1.5) then the pair also
satisfies (1.6) since there exists an x (say xq) in ¥ such that

y(to.t] = F(xp;u(to,t]) 1.7)

Conversely, any pair (u,y) satisfying (1.6) for some x in ¥ over (tg,t] is also an
input-output pair for (. This condition must hold for all (zg,?] in T and for all
u in R[u]. The purpose of the mutual-consistency condition is to ensure that
equations (1.5) and (1.6) both represent the same object.

We demonstrate the mutual-consistency condition by again considering the
mass object of Section 1.4. @ is characterized by

1. op. cit.
2. op. cit.
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dy
= =y m=1) (1.8)
dt (

The first part of the mutual-consistency condition is fulfilled in the sense that
(1.8) can be written as

Quy) =0

where

t
; (u,y) = (u(t),a + J u(’é)d5>
to

thereby satisfying (1.5). Further, the output y satisfies (1.6) since we can write,
with proper choice of x,

t
y(@®) = xo +J u(§)dg
t

[

Flxo;u(?)

Conversely, consider the input-output state relation of the form

t
[ +f u(t)ds
to

Fla;u(?) (1.9)

»(t)

With proper choice of x (=a) the pair (u(r),y(t)) characterizing @ satisfies (1.6).
By direct substitution of (1.9) into (1.8) it follows that every pair (u,y) satis-
fying (1.9) also satisfies (1.8). Thus, every input-output pair for @ characterized
by (1.8) satisfies (1.6), and vice versa.

1.8 CONDITION II, FIRST SELF-CONSISTENCY

¢ The response y(z) at any time ¢ > t is uniquely determined by x and u(o.¢] .
< This must be true for all ¢g. To qualify as a state space of @, the space ¥ must
4 have the property that, given any point x in ¥ and any input u(#q,7] (defined

over the input segment space), the output at time ¢ is uniquely determined by x
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and u. The point x at time ¢ will be called the state of (f at ¢o. The output is
independent of u or y prior to time f(. This is a key property of the state space
concept.

An input-output-state relation of form (1.9) clearly satisfies the first self-
consistency condition—regardless of the range of a. (For all ¢y the output y at
time ¢ is uniquely determined by a and u. y is independent of u or y prior to ¢(.)
However, by changing the upper limit of the integral (1.9) from  to £+1, ie., if
we have

t+l
yE) = a + j u@®ds > 1,
t

(o}

we no longer satisfy the first self-consistency condition. The output at time ¢
cannot be determined without knowledge of u(¥) between t and ¢+ 1.

i 1.9 CONDITION IIl, SECOND SELF-CONSISTENCY

If the input-output pair (u[zg.t1], y[9.t1]) satisfies (1.6), then (u[zt,¢1],
y[t,t1]) also satisfies (1.7). u[#,¢1] and y[¢,2;] are sections of u[zg,7;] and
vlto.t1], respectively, and ty < ¢ <t;. This must hold for all x in ¥, all
u[zg,t;] in the input segment space, and all tg,¢,¢;. The purpose of this
condition is to ensure that the state space W can include all possible initial
conditions for (1.

To help clarify the meaning of the second self-consistency condition con-
sider the input to ({ over (#,t;] as consisting of two contiguous segments,
uO(zgt] followed by ul(t,t1],i.e.,

u = ulul!
(Note: uOul is not to be interpreted as the product of u® and ul.) If the
input-output pair (uOul,yOy!) satisfies (1.6), then the segment response to
uOul beginning in state x(t() = xg is

y0y1 = F(xO;uoul) (110)

To say that (ul,y!) also satisfies (1.6), as the second self-consistency condition
does, means that there must be some values of x in ¥ such that

y! = F(x;ul) (1.11)

for all arbitrary times ¢, where fg <t < t;. Denoting these values of x in ¥ as
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the set A the second self-consistency condition requires that this set be non-
empty. (Figure 1.4 graphically illustrates the idea.)

To further illustrate the second self-consistency condition let { be charac-
terized by the relation

31
y¢) = o? +J u()dg (1.12)
t

0

u and y are real-valued time functions and W includes the set of all real numbers,
i.e., @=x is any real number. Let’s consider the value of y at the particular time
£=1. For £ =t equation (1.12) becomes

t
y(t) = a? +f lu(r)dt (1.13)
t

0

Let the input u(¢) over the observation interval [0,5] be u(¢) =-3¢2 and let the
initial conditions at time #( =0 be xo =ag = 1. From (1.13) the response over
[0,5] is

5
y@y=1- 0y

Thus, the input-output pair associated with xg =1 for the interval [0,5] is
(-312,1- 13).

INPUT-OUTPUT

T
t f Time
o ”’- —‘—___T_.—
& < e
< Xt A |, -
; \\~ ,ff
: ! :
4 d
T T —
ty t 4 Time

Figure 1.4 Values of x in ¥.
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Now consider the intermediate time f=2. The second self-consistency
condition requires that if the input-output pair (0,5],»(0,5]), which is
(=312,1- £3), satisfies (1.6), then the same pair over the time interval [2,5] also
must satisfy (1.6). Since ( is characterized by (1.12), we have for [2,5],

5
y(t) = af + f -3r%dt (1.14)
2
Also, from (1.12) we can write for the pair (-312,1- ¢3)
2 5
y() =1 + f -3t2dt + f ~312dt (1.15)
0 2
The only way the pair (-3¢2,1- £3) can satisfy (1.14) is if

2
1- f 312dr
0

= -7

a2

Clearly, o? =-7 has no solution in ¥, where ¥ consists of real numbers. There-
fore A is empty and the second self-consistency condition is not satisfied by
relation (1.12).

On the other hand, if @ were characterized by an input-output-state rela-
tion of the form

t
@ = a +f u(¥)ds (1.16)
)

instead of (1.12), then for any xq in ¥ and any £ in [t0,t1], where tg <E <1y,
we can write

t 151
y(§) = ao + f u(£)dg +f u(¥)dg g <t< 1t (1.17)

to t

The pair (u(t,t1),»(t,t1)) is an input-output pair with respect to

t
x =agt fu(z)di (1.18)

to
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It is seen from (1.18) that for any real-valued time function u in the input space
the state x; assumes a real value in W, given that o is real. Thus an input-
output-state relation of form (1.16) satisfies the second self-consistency
condition.

1.10 CONDITION {1V, THIRD SELF-CONSISTENCY

We defined an object ( as a family of sets of input-output pairs. To complete
the parametrization of the input-output pairs it remains to examine the meaning
of the term “the state of ({ at time ,” where ¢ is arbitrary. This is equivalent to
asking what happens to the set A of values of x in ¥ as the input segment
ul(z,1;] varies over the input segment space of (f. We want to portray the
situation as one where x and u® are held fixed and u! is varied over the entire
input segment space.

From the first and second self-consistency conditions we readily deduce
that the set 4 depends on xq, u® and ul (where the variable ¢ is arbitrarily
fixed). We can write for 4

A = A(xg;ulul) (1.19)
Now consider the situation where u! varies over the input segment space of (1,
i.e., u! assumes the variations ull ,uzl ,-... Accordingly, the corresponding 4 sets
become A(xo;uoul'),.‘i(xo;uouzl ),... If we form the intersection of all the A

sets (denoted by the A" subset) this intersection (if not empty) is the set of all
points x in ¥ to which every pair (u',y!) saiisfying

yoy! = F(xg;ulul) (1.20)
also satisfies
y! = F(x;ul) (1.21)

for all x in the intersection.

Based on the above discussion we state the third self-consistency condition
as follows: Let (u0u!,yOy1) be an input-output pair satisfying (1.6) with respect
to some xq, i.e.,

yOy! = F(xo;ulul)

Also, let A(xg;u®u') be the set of all x where (ul,y!) is an input-output pair
satisfying (1.7), i.e.,

y! = F(xu!)
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The third self-consistency condition requires that the intersection of all
A(xg:;u®ul) taken over all ul(z,¢;] in the input segment space be nonempty for
all ¢¢, all xo in W, and all segments u(z(,#;] in the input segment space of ({.

From the way in which the third self-consistency condition is formulated
it cannot be satisfied unless all of the A(xg:ulu!) sets are nonempty. This
implies that the second self-consistency condit!  is also satisfied. However, the
converse is not true.

The meaning of the third self-consistency condition is readily demon-
strated by example (1.16). Let ( be characterized by an input-output relation of
the form

n
yE) = xg + f u(§)dt (1.22)
t

0

We establish the following conditions under which the third self-consistency
condition will be evaluated: ¢ty =0, xo =4, intermediate time r=2, t; > 2,
u(()=2¢ for 0 < ¢<t, and u(¥) = variable for 2 < ¢ <. Dividing the integra-
tion range of (1.22) into [0,2] and [2,a], where 2 <a < ¢, we have

2 a
y(a) 4+f 2£d£+fu(£)d£ 2<a<t
0 2

8 +f u(¥)ds (1.23)
2

which is of the same form as (1.22). This implies that (u(2.¢1],»(2,¢;1]), with
y(2,t1] defined by (1.23), satisfies (1.22) with x = 8. Therefore, the A4 sets as
defined by (1.19), (1.20) and (1.21) are nonempty. These sets all contain the
point x = 8, and hence, so does their intersection. We conclude 4 is nonempty
when =2, u(¥)=2¢ for 0<§<t, and that relation (1.22) satisfies the third
self-consistency condition.

1.11 STATE AT TIME ¢

For the discussion to follow we denote the intersection of all the 4 sets (formed
by varying u! over the entire input segment space) as the A’ subset. (It has been
said that A’ is the set of all points x in W to which every pair (u!,y!) satisfying
(1.20) also satisfies (1.21).) Clearly, A’ contains values of x where the response
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to u! is the same for all starting states in 4'. This is true for all u! in the input
segment space. Therefore, the third self-consistency condition provides for the
following definition! of the state of (@ at time t: Given that (1 is characterized
by (1.6) and the response of ( to input segment ulu! starting in state x is
described by (1.20) and (1.21), then the state of (f at time ¢ is any state x in the
A’ subset.

Symbolically, the state of ({ at time ¢ will be denoted as x(r), bearing in
mind that this is merely a label to identify an element of A'(xo;u®u!) with the
state at time ¢. Similarly, x(z¢) will notationally identify with the initial state of
( at time #y. Accordingly, the response at time ¢ can be written, in accordance
with (1.6), as

() = y(x(t9):u(to.1]) (1.24)

We note from (1.24) that, for each fixed ¢, x(¢() and x(¢) range over the entire
state space ¥, i.e., R[x(t)] = ¥. The components of x(¢) will therefore be desig-
nated as the state variables or elements of the state vector x(t).

On considering an input u(to.t;] applied to (f while ( is in state x(r), it
follows that x(z{) is the terminal state. If, however, we have u(tg,t;] followed
by wu(ty,t2],u(t2,63],..., then each of the respective terminal states
x(21),x(22),x(23),. .., plays a dual role; each represents both the terminal state
relative to input segment  and the input state relative to input segment ¢ + 1.

For objects characterized by input-output relations of the form (1.5), i.e.,
((u.y) =0, the standard practice is to associate x(¢) with such objects by defin-
ing x(¢) in terms of u(zg,¢] and y(z(,t], and to verify that the four consistency
conditions are satisfied. In cases where (1.5) is a differential equation then x(¢)
can be defined in terms of u(z) and y(¢z) and a finite number of their time
derivatives. Other expressions for x(¢) in terms of u(z¢.¢] and y(¢q,t] can readily
be obtained by changing the coordinate system of the state space. Importantly,
there are many ways to associate a state vector with an object.

x(t) has been defined to be an element of the set A'(x(to):u'ul). Since A’
depends only on x(zy) and u(tg,], then so must x(z). Thus, we can write for the
State equation

x(t) = x(x(tg):u(to.1]) (1.25)

Under proper regularity assumptions for x and u equations (1.24) and (1.25) will
tend in the limit to differential equations of the form

x(2) = x(x(t),u(t).....uB().1) (1.26)

(1) = y(y(o).u(r)....u®1).1) (1.27)

1. op. cit.




18 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

where x and y are point functions and uk)(r) is the kth derivative of u(z).
Equations (1.26) and (1.27) particularly apply to differential objects and are
referred to as the state equations in differential form. Differential objects and
their respective state equations are of considerable interest in system theory and
will be the focus of discussion in later chapters. In particular, linear differential
systems and their state equations assume the simple form of

x(t) = A()x(t) + B(t)u(r) (1.28)
v(6) = COx(r) + D) + DYWD(@) + ... + DR ) (1.29)

where the coefficients are (time dependent) matrices.

1.12 MULTIPLE OBJECTS

Thus far we have considered only the single object (I, its terminal variables and
the relations between them. Our principal interest, however, is a collection of
objects that interact with one another. We will now focus on the analysis of
multiple objects.

For the most part we shall use the conventional rectangular block to
graphically describe an abstract object (f (see Figure (1.5)). Here the leads
represent the terminal variables, which can denote either scalar or vector varia-
bles. The important thing is that each variable is treated as an entity when each
object ( is interconnected with other objects.

From equation (1.25), where

y(t) = y(x;u)

it is seen that each component of y(¢) is a function of x and u. Therefore, we can
express each component of y as

yi(t) = yi(x;u) (1.30)

This implies that an object, as shown in Figure 1.5, having ¢ inputs and m
outputs, can be represented by m objects ({1, {d3. ({3.....{,, each having ¢

uy Y1

=0
@ A Figure 1.6 Graphical representation of object.
ug Ym
oO—— L «O0

o e &.'-.":"‘ gt .,-?i,‘;-wm o X WAL Y 7Y
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inputs and one output (see Figure 1.6). Thus, if the objects under consideration
are oriented there is no loss in generality in assuming that the composite
“object” is made up of oriented objects where each has one output variable.

1.13 INTERCONNECTED OBJECTS

Essentially, a “system” is a collection of interacting objects. The interactions
between objects ({1, d2,...,({x, represent constraints on the terminal vari-
ables. An example of such a constraint is the fact that the ith terminal variable
of object ({; is equal to the kth terminal variable of object (g, for all £in T. The
set of objects (f;,{5,. .., y, constrained in this manner is said to be an inter-
connection of ({1.(2,....(An. Such an interconnection can be represented
graphically as shown in Figure 1.7, where the composite object is designated as
(. Specifically, the set of objects {({;} i=1,2,3,..., NV, is said to be an intercon-
nection of the ({; if every object in the set shares at least one terminal variable
with one or more of the other objects of the set. If some, or possibly none, of
the (1; share terminal variables the collection is partially interconnected.

There are several simple types of interconnections encountered frequently
in systems analysis; they are the tandem combination and the parallel combina-
tion. In the sequel we will briefly highlight both.

’
q, o
u v u)
1 1 o -
: - : L0
a : = ug y
ug Ym .
o— .
S Ym
d, f—=o

Figure 1.6 Equivalent representation.
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Figure 1.7 Interconnectad objects.
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1.14 TANDEN COMBINATIONS—INITIALLY FREE

For an analysis on multiple objects to have any concreteness it must be able to
answer for the composite object the same questions that are asked of the single
object: What is the input-output-state relationship of the composite interconnec-
tion? What is the state-space? What is the output function space? At this point it
must be noted that answers to these questions, particularly for large complex
systems, have not been readily established. In fact some of the concepts sug-
gested below are tentative. The ideas presented below, although tentative and
sketchy, are representative of some progress in this area.

In order to establish a basis for answering the above questions we intro-
duce the idea of the initially free interconnection, which will be symbolically
denoted as (1(z(). The connections between the (1;, as shown in Figure 1.7,
remain open until 7 = 7, at which time the Q switches are closed. We regard ( as
a limiting form (as t;y - -%) of an initially free interconnection ({(rg). It is
therefore possible to relatc the properties of (1(¢) to those of (f(¢y), thereby
giving a characterization to the state space of (1.

Consider a collection of oriented objects (I}, (1,,... (y, (as depicted in
Figure 1.7) where each is characterized by a relation of the form

vyl = y(xi:u) (1.31)

If there is no interaction between the various (1;, i.e., all the switches are open,
then the collection is the direct product of (f;,,,...,{x, which will be de-
noted as ({; X ({3 X ... X (. The input to each (f; along with the state of
each ({; is clearly independent of the inputs, outputs and states of any of the
other objects in the collection. Accordingly the input and output of the com-
posite ({ are defined to be, respectively, the composite vectors.

u = (uhu?, .. W) (1.32)
and
y = (yhy?...yN) (1.33)

The corresponding input and output segment spaces of (I are the products,
respectively,

R[u] = R[u!] X R[u?] X ... X R[W] (1.34)
and

Rly] = RIy'l X R[y?] X ... X R[y] (1.35)
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Similarly, the composite vector
x(1) = O (e),x2(0), ... xM1) (1.36)
is the state of (f at time ¢, where the state space of ( is the product space

=yl X ¥2 X ... X PN (1.37)

Now let two of the (;, say (; and (5, be connected in tandem, with ({;
preceeding (12, as shown in Figure 1.8. In a tandem combination the input uZ to
(7 is “constrained” to be equal to the output y! of ({;. It is necessary now to
distinguish between two situations: (1) u2 =y! for t> t(, where t¢ is the in-
stant u! is applied to (1, and (2) u2 =y! for all ¢. Case (1) is the initially free
tandem combination, which will be considered subsequently. Case (2) is the
constrained tandem combination and will be considered in the next section. In
(1) @ and (@, act like the direct product for ¢ < ty. The switch Q signifies that
u? is constrained to be equal to y! from time ¢ on, but not before.

Proceeding with case (1), where Q is closed at time f(, we assume that (1
and (1, are characterized by relations of form (1.31), with the output segment
space of (f; contained in the input segment space of (5. Let the states of (;
and (1 at time ¢ be (as deduced from (1.31))

xi(t) = x(x({;ui) (1.38)

where xd = xi(ty) and = ui(ty,r]. The initial states x; and x¢ can be chosen
arbitrarily in W! and W2. Therefore given x', x;2 and ul(zq,¢] we can find. from
(1.31) and (1.38), the output y2(fg.t], and the states x!(¢) and x2(z) for any
t > tg. Thus, the free product of the tandem combination (1} and ({7 is an
object (1(¢o) characterized by the input-output-state relation

2

y y[xZ;u?]

yIxg;y(xg ;uh)] (1.39)
where the composite state vector

Xy = (xOl, x02) (1.40)

u! =y, u? — »?
Figure 1.8 Tandem combination of (; and (5. o @, e d>
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plays the role of the initial state of ({(¢(). The state of ({(fy) at time 7 is
x(t) = (x\(2),x%(r)) (141)
where x!(¢) and x2(r) are expressed by (1.38) as
xI(t) = x(x, ;u') (142)
x2(r) = x(xoz;x(x(,];u')) (1.43)

The corresponding output segment space for ((z¢) is the set of output functions
2 .
y4ie.,

R[y?] = {y?} (1.44)

where y2 is determined by (1.39).

Clearly, equation (1.39) satisfies the first self-consistency condition of
Section 1.11. However, this alone is insufficient to qualify (1.39) as the input-
output-state relationship for (¥(¢¢). (But it will be seen later that if ((¢¢) admits
to the response separation property, highlighted in Chapter 2, then the com-
posite state vector

x(t) = (l(t),x3(2),. .., xV(¢))
for @y,{3,....,Qy qualifies as the state vector of ({(z¢) at time ¢.)

It is important to note that the composite state vector for the free product
(@, and (5, ie.

x(t) = (x40, x*(2))
is unlike the initial state vector (xOl,xoz). The initial state vector ranges over the

product space W1 X W2, The vector (x!(¢),x2(¢)), which is the state of Q(z) at
time ¢, ranges over a subset of W1 X W2, This subset W(¢(,7) is

W(to,1) = {(x'(1).x2(1))} (1.45)

where x,' and xg are elements of W! and W2, respectively, and the states x!(r)
and x2(z) are given by (1.42) and (1.43), respectively. The arguments ¢ and ¢ of
the subset serve to show the subset’s dependency on both #( and ¢.

p Typically, the free product of 3 objects ({1, {5, (3 is

v3 = yixgdivixdv(xguh)] (1.46)
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Note that (1.46) is associative. (13(12) @) and @3((@2 (1) both characterize the
same input-output-state relation. Obviously, (1.46) can be extended to N
objects.

1.15 TANDEM COMBINATIONS—CONSTRAINED

The idea of an initially free tandem combination of objects provides a con-
venient way of describing the constrained combination, i.e., the combination of,
say (1; and (f2, in which the input to (, is constrained for all time # to be the
output of {. Such a combination, which will be designated as the combination
(1, is depicted in Figure 1.8 where the switch Q is closed and u! is applied to ({;
afterwards.

The constraint u2(z)=y!(¢) for all ¢ is regarded as the limiting form (as
to = -°) of the constraint u2(r) = y!(¢) for ¢ > t(. The implication here is that
the state space of ( is characterized by the limit, if it exists,

V(@) = lim ¥(1.1) (147)

[0—»_0-:

The exact meaning of (1.47) and the conditions under which it exists are com-
plicated and unsettled questions. However, for our needs we will interpret (1.47)
to mean that for each ¢ we can approach any point in W(¢) arbitrarily closely via
a point in ¥(#¢,t). For systems of interest (differential systems) the state at time
t is defined by a finite number of derivatives of the input and output at time ¢.
W(¢) can be determined through the process of elimination of identical variables
from expressions for states of (f; and (1.

Based on the above observations the combination ( can be regarded as the
limiting form of the free product (f(to) as tg > -o=. The state space of ( is a
subset W of W1 X W2. We have

Y(r) = ' lim {(x!(£),x2(1))} (1.48)
o—a—-oa

where x , x¢ and u! are elements of W!, 2 and R[u'], respectively. x!(£) and
x2(t) can be determined by expressions (1.42) and (1.43), respectively. The
corresponding input-output-state relationship for (1 is of form (1.39) and (1.46),
with (xol,xoz) ranging over W.

Clearly, for the objects (f1,({3,...,dy the above analysis can be ex-
panded as appropriate.
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1.16 SYSTEM

We now return to our definition! of a system as given in Section 1.2. A system S
is a partially interconnected set of objects, called components. These com-
ponents may be oriented or nonoriented; they may be finite or infinite in
number; and each may be associated with a finite or infinite number of terminal
variables.

A system may be regarded as a single object. Conversely, any single object
may be regarded as a system. If a collection of objects (11,(d2,...,dy is con-
sidered as a single system the set of terminal variables of the system S is the
union of the terminal variables of its components. If the components of S are
oriented, then so is S. The aggregate of shared terminal variables and the non-
shared output variables of the various components together comprise the output
variables of S.

1. op. cit., p. 65.




2
State Equations

2.1 INTRODUCTION

The intent of Chapter 1 was a more careful definition of a system than is found
in the texts of physics, mechanics and control theory. The building block of the
defintition was the oriented object, i.e., the sets of ordered input-output pairs.
The notion of state allows for labeling the pairs, or the parametrization of the
space of input-output pairs. The discussions of this chapter will expand on the
idea of system state. Specifically, the fundamental properties of the self con-
sistency conditions will be examined; the most important being the state separa-
tion property. This property leads directly to an input-output-state relation, in
canonical form, for linear differential systems. The definition of state, as formu-
lated in Chapters 1 and 2 is of general applicability. It provides a basis for
defining the states of complex systems comprised of both linear and nonlinear
components.

2.2 SEPARATION PROPERTY

In Sections 1.7 through 1.11 we defined x(¢), the state of ( at time ¢, where
t> 19, as an element of the intersecting A sets A(xg:u®ul). These sets are
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created at fixed ¢ by varying u! over the input segment space. By its definition 4
is the set of all x satisfying the relation

y(xp;u®ul) = y(xg;u’)y(x;ul) (2.1)
or
y(x(10);u%ul) = y(x(t9);u®)y(x(r);ul) (2.2)

for all x(¢9), u® and u!. Relations (2.1) and (2.2) are interpreted to mean that
given an input consisting of segment u¥ followed by segment u! the response of
(@ starting in state x(g) is response segment y(x(():u’) followed by response
segment y(x();u!), where x(¢) is the state of ({ at time ¢ > t. This property of
x(?) is referred to as the separation property.

By specifically designating "()l as the terminal state into which xq is taken
by u® equation (2.1) becomes

y(xo:ulu') = y(x:u®)y(xg u') (2.3)

Equations (2.1), (2.2) and (2.3) can be rewritten as an expression for y(¢)
rather than the response segment y(to,t]. If we let the variable £ be the inter-
mediate time between #( and ¢; we have (in the limit) the identity correspond-
ing to (2.3),i.e.,

y(x(to)u(to.t]) = y(x@E)u.1]) o <E<t (24)

The expression y(x(£);u(t,t]) is the esponse of (f at time ¢ to u(g,¢], with @
initially in x(¥) and where tn < § <t.

The analyses of (2.1)-(2.4) places in evidence a distinct connection be-

tween the self-consistency conditions and the separation property. The relevant
facts are summarized as follows. If a relation of the general form

y(t) = y(x:u) (2.5)
has the response separation property (for all x and u),

y(xo:u(to.1]) = y(xgu.r]) 19 <E<t (2.6)

(where xOI depends only on xg and u) then we assert that (2.5) satisfies the
three self consistency conditions, with xo and x(,' being the states of ({ at time
to and &, respectively. Further, equation (2.5) qualifies as an input-output-state
relationship.
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Clearly, the first self-consistency condition is satisfied since y(?) is
uniquely determined by x( and u. The separation property as stated by (2.6) is,
in fact, a statement of the second self-consistency condition (see Section 1.12).
By adding the qualification that xol depends only on x( and u, then every set
A(xg;u®ul) will contain xul. Therefore the intersection of the A sets formed by
varying u! over the input segment space will be nonempty. Thus, the third
self-consistency condition is satisfied. The importance of the separation property
is that for a given input-output-state relation of form (2.5) verification of the
self-consistency conditions is reduced to demonstrating that (2.5) has separation
property (2.6).

The separation property (2.4) can logically be extended to include the
state of (. Given that the input-output-state relation is of form (2.5), i.e.,

v(t) = y(x(tg);u(to,t])

the state equation induced by (2.5) is

x(#) = x(x(tg).u(zg,t]) 2.7)

In keeping with (2.4) we assert that state equation (2.7) has the state separation
property

x(x(t);u(to;t]) = x(x(§);u(,t]) tg <E<t (2.8)

for all x(zg) and £. This property of state equation (2.7) is one of its key
characteristics.

To illustrate both the response and state separation properties of (2.4) and
(2.8) let ( be characterized by the input-output state relation

y(t) = y(x(tg)u(to,t])

t
x(tg)e 710 + je“"‘)u(z)ds (2.9)

to

The state equation induced by (2.9) is

t
x(1) = x(tg)e 10 + j e~ Ey(k)dt (2.10)
fo
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Specifying the integration variable as 7, where ) <7 <, equation (2.9) can be
written as

T t
y(t) = x(tg)e” 710 + f e Oy()ds + J. e =Dy@E)ds  (2.11)
o T
However, from (2.10)
x(1) = x(z9)e” 710 + J e u(g)ag (2.12)
to

Thus, response (2.9) becomes

{7
(1) x(T)e-(t—T) + fe~(l—€)u(£)d£

T

Yx(r)iu(r,1)) to <7<t (2.13)

which illustrates the response separation property. On returning to (2.10) the
state separation property (2.8) assumes the form

O = x(r)e- =10 + f Oyt

to

x(x(1);u(r,t)) (2.14)

2.3 STATE EQUATIONS

The ideas of Sections 2.2 can be combined into the following THEOREM 2.1:
If (1 is characterized by relations of the form

x(t) = x(x(ty);u(tg.t]) t> 1 (2.15)
y(2) = y(x(t);u(1),t) (2.16)

where x(t) has the state separation property (2.8), then x(¢) can be the state of
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( at time ¢, and (2.15) and (2.16) the state equations of (. Proof of this
theorem is seen by substituting (2.15) into (2.16) giving

y(r) = y[x(x(t0);u(tg,t]),u(z), ] (2.17)
which is of form (2.5), i.e.,
y(1) = y(x(z9):u(to,]) (2.18)
By virtue of its state separation property equation (2.15) can be rewritten as
x(x(t0);u(t.t]) = x(x(£):u(¢.1]) (2.19)
On substituting (2.19) into (2.17) we have
y(t) = y[x(x(€):u(.t]).u(0).1] (2.20)
which is of the form
y(t) = y(x(&)u(t.1]) (2.21)

However, (2.21) can also be derived directly from (2.17) by replacing ¢ with £.
Thus,

y(x(t0);u(ro.1]) = y(x(§):u(,]) (2.22)

and ({ has response separation property (2.4). Further, since x(§) is determined
by x(tg) and u(?(,t], it follows that: (2.18) is an input-output-state relationship
for (f, with x(r) being the state of (1 at time ¢; equations (2.15) and (2.16) are
the state equations.

Theorem 2.1 offers further insight into the relationship between the state
separation property and the self-consistency conditions; it provides an effective
way of verifying that the self-consistency conditions are satisfied. An immediate
inference from the theorem is seen in the following COROLLARY: If { is
characterized by differential equations of canonical form

x(t) = x(x(t),u(t),t) (2.23)

y(t) = y(x(r),u(t),t) (2.24)

where (2.23) has a unique solution for x(¢), then x(¢) is the state of ({ at time ¢.
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To prove this corollary we first integrate (2.23) between the limits ¢ and :

14
x(1) = x(t9) + J. x(x(§).u(¥).£)dE (2.25)

to

which is an implicit form of (2.15). (By hypothesis x(¢) is determined by x(#¢)
and u(z(,¢].) Equation (2.25) has the separation property

t
x(t) = x(r) + f X(x(£).u(E).E)d

T

The conclusion of the proof of this corollary follows from the parent theorem.

State equations (2.23) and (2.24) are quite general and cannot be readily
used in their present form. By casting them in a more explicit form, which is
applicable only to linear systems, we can state that if ({ is characterized by
linear differential state equations

x(r) = A@)x(t) + B(H)u(z) (2.26)
y(t) = C()x(t) + D(t)u(r) (2.27)
where A(t)...D(¢) are time-dependent (but need not be) matrices then x(t)
qualifies as the state of (I at time ¢. Equations (2.26) and (2.27) are the canoni-

cal state equations of the linear system (1. They are directly deducible! from
(2.23) and (2.24), respectively.

1. See, for example, op. cit. pp. 82-83.




3

Time Invariance, Linearity
and Basis Functions

3.1 INTRODUCTION

To further solidify the ideas developed thus far we will establish, by definition,
certain “benchmarks” relative to which analytic discussion can be more mean-
ingful. In particular, these benchmarks will include definitions of the zero,
ground and equilibrium states.

The zero state, say state 0, is defined as that state where, for all ¢, the

system response to zero input, starting in state 6, is a zero-valued output (null
function). Symbolically, if, for all ¢,

y(t) = y(6:0) = 0 @3.1)

where x(t() = 0, then 0 is the zero state. The zero state response of the system at
time ¢ to input u is the response with the system initially in its zero state 0 i.e.,

y(t) = y(O:u)
= y(u) (3.2)
31
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The idea of the ground state coincides with that of the zero state. Consider
a system at time ¢ in the initial state x(zg) = x and let the applied input be
zero-valued, i.e., u=0. We want to examine x(z) as ¢t - . There are two possi-
bilities: (1) x(r) may converge to a fixed state, say xj, or (2) x(z) may not
converge. We will restrict our attention to (1). In case (1) two possibilities again
exist: (a) xj depends on xg, or (b) x is independent of x(. The ground state of
interest is condition 1(b); it is said to be the limiting terminal state into which
the system eventually settles when no input is applied. Symbolically, to say state
x is the ground state implies that

x; = lim x(xq:0) 3.3)

t—oo

where x; is independent of xq. The limit (3.3) is unique. Accordingly, if x;
exists it also is unique. In conjunction with (3.2) the ground state response of
the system has the same meaning as the zero state response, with the exception
that the initial state is x( instead of 6. At time ¢ the ground state response of the
system to input u is

y(t) = y(xp:u) (3.4)

In addition to the zero and ground states it is meaningful to establish the
identity of the equilibrium state. Essentially, a state, say 8, is called an equilib-
rium state if it does not change for zero input. Symbolically, to say @ is the
equilibrium state is to say that

b = x(6;0) t= 1t (3.5)

where x(8;0) is the system state at time # > ¢(, given that the state at time ¢ is 0
when the zero-valued input is applied.

3.2 TIME INVARIANCE

In the sequel the specific systems of interest will be those that are time-invariant
and linear. Time invariance can be conveniently discussed in terms of a time
translation operator T,. The action of the operator on an operand is to shift the
operand by a fixed amount of time A along the time axis. Positive and negative
A correspond, respectively, to a delay or increase of A units. For A=0, T,
corresponds to the identity operator |. This action on input u is depicted in
Figure 3.1.

Consider a system in its initial state xq, but not necessarily the zero state 6.
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Figure 3.1 Time translate operator 7.

The system is said to be time invariant with respect to the initial state x if,
for all starting states x¢, all inputs u and all time shifts A,

Taly(xp:uw)] = y(x0:Tau) (3.6)

Expression (3.6) is interpreted to mean that the response to Tpu with the
system initially in xg is equal to the shifted response Tx[y(xg;u)] with the
system initially in xq.

As special cases of (3.6) we examine zero state and zero-input time invari-
ance. A system is said to be zero state time invariant if for all inputs u and time
shifts +A the zero-state response to u is a time translate of its zero-state response
to the translated input, i.e., for all A and u equation (3.6) becomes

V(T5(0:u)) = Taly(0:u)
y(Ta(w) = Tay(u) (3.7)
Similarly, a system is said to be zero input time invariant if for all initial
states X, all initial times #( and all time shifts A, the zero input response to u
starting in state xo at time #o * A is identical to the zero input response starting

in state xo at time #g. This implies that for all A and x(¢(), equation (3.6)
becomes

y(x(tg £ A);0) = Tay(x(¢9):0) (3.8)

3.3 LINEARITY

The term linearity suggests proportionality. Of interest will be the proportion-
ality among system quantities; specifically, their homogeneous and additive
properties. A system is said to be linear if it is both homogeneous and additive.
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It is homogeneous if for all inputs u the zero state response to an input Cu is C
times the zero state response to u, where C is a constant. We have

y(0;Cu) = Cy(8;u)

y(Cu) = Cy(u) (3.9)
where y(u) is the zero state response to u. Similarly, a system is additive if for
any pair (or more) of inputs, u! and u2, the zero state response to u! + u? is the
sum of the zero state responses to u! and u?:

y(0:u' +u?) = y(@;ul) + y(0:u?)

y(u! +u?) = y(u!) + y(u?) (3.10)

On combining the ideas of (3.9) and (3.10) a system is said to be zero state
linear if and only if it is both homogeneous and additive. Therefore,

y(0:C(u' +u?)) = Cy(6;u') + Cy(0;u?)

y(Cu' +u?)) = Cy(u') + Cy(u?) (3.11)
If the initial state is x(, then the system is linear with respect to the initial state
X() if

y(0;Cu! + u?)) = Cy(xg;ul) + Cy(xo;uz) (3.12)

holds for all real constants C and all u in the input segment space.

As a further consequence of (3.11) and (3.12) it can readily be shown that
if a system is zero state linear then it is also linear with respect to all init:al states
reachable from the zero state. However, it is not linear with respect to all
possible initial states. To clarify what is meant by linearity we add the property
of zero input linearity . A system is zero input linear if its zero input response is a
homogeneous and additive function of the initial states, i.e.,

¥(Cx0:;0) = Cy(x(:0) (3.13)
y(xg +x:0) = y(x):0) + y(x:0) (3.14)

for all xq (i.e., xO‘,xOZ.. ..) in the state space V.
Equations (3.13) and (3.14) can be combined giving

y(C(xy +x3):0) = Cy(x,':0) + Cy(x:0) (3.15)
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Clearly, from (3.12) and (3.15) a general definition of a linear system, which
includes both zero state and zero input linearity, can be made as follows: A
system is linear if and only if

(1) it is linear with respect to all possible initial states, i.e.,
y(©:Cu! +u?)) = Cy(xp:u') + Cy(xo;u?)
(2) it is zero input linear, i.e.,

¥(Clxg' + x2):0) = Cy(xg:0) + Cy(xg':0)

As an adjunct to the above definition another basic property for linear
systems can be deduced from (3.15). Letting C=1 and u? =0 we have, using
(3.2),

y(xg;u) = y(x;0) + y(0;u) (3.16)

The system response to u starting in state xq is equal to the zero input
response starting in state xo plus the zero state response to u. Property (3.16) is
known as the decomposition property. Since this property was derived from
(3.15) it follows then that every linear system has the decomposition property.
However, the converse is not necessarily true. We conclude the discussion on
linearity by stating that every linear system must be zero state linear, zero input
linear and must possess the decomposition property .

Equation (3.16) is another form of our initial input-output-state equation
(1.6). The importance of linearity is to provide a relative ease in determining the
system response to a given u. Through the decomposition property the effect of
u is separated from the initial excitation as represented by y(x(:0). As will be
seen later, the zero state response y(0;u) can be reduced to resolving u into
simpler components and determining the zero state response to each component
separately.

3.4 ZERO STATE OR IMPULSE RESPONSE

By (3.16) we established that the input-output-state relation for any linear
system admits to a representation of the form

y(r) = y(x0:0) + y(0:u) (3.16)

Focusing our attention on the zero state response, without loss of general-
ity we let 8 =xg and u=58(t- £), a unit impulse (delta function). We chose
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u=§(r - £) since any arbitrary signal u can be reduced to a series of elementary
functions, such as an impulse (see Appendices A and B). Therefore the problem
of determining the response y(0;u) to an arbitrary input is reduced to finding the
system response to the elementary signal. The second term on the right in (3.16)
becomes

y(O:u) = y(u) = y(6(t - £)) (3.17)

or in scalar form!

Y1) = y@(t- ) (3.18)

A fixed (time invariant) system can be identified with an operator, say H,
wherein the system is entirely characterized by its response at time ¢ to a simple
impulse 6(z - £) applied at any instant of time §. Accordingly, we can write for
(3.18)

y(1) = y(u) = Hlu(r)) (3.19)
= H[5( - ®)] (3.20)
= h(t,£) 3.21)

where h(z,£) is the zero state response at time ¢ to a unit impulse 6(7 - §) applied
at time &. Accordingly, h(t,£) is also called the impulse response. From (B.4),
however,

oo

u(t) = f u(®)s(t - £)ds (3.22)

Therefore, substituting (3.22) in (3.19) we have
y(@t) = H D- u(§)s(t - E)dz] (3.23)

which, due to the homogeneous and additive properties of linear systems, can be
written as

1. For convenience in the analysis we will first examine the input-output-state equations in
scalar form.
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() '[H[5("$)lu(£)d$

J h(t,£)u()dg (3.24)

—o00

Integral (3.24) can be viewed as a summation of responses to impulses applied at
time £ of strength u(¥)d%, with ¢ varying over the time internal (-°,%¢). As a
result it is often referred to as the superposition integral.

To qualify the zero state response h(z,£) as time invariant it must be of the
form A(r - £). This fact becomes evident by writing (3.24) as

{5
() = f h(t - §)u(E)dk (3.25)

to
Shifting the input u(£) in time by A units the output at time ¢ + A becomes
t+A
0 = [ e a- pue- sy
tota
We see that the zero state response at time ¢ + A is equal in magnitude to the
zero state response at time £, which satisfies condition (3.7). Hence, we assert
that a linear system is zero state time invariant if its impulse response a(#,£) is of

the form h(t - £). Therefore a system obeying the input-output relation (3.19) is
time invariant if

y(t-§) = Hlu(t- §)] (3.26)
For multidimensional inputs, where

un=gwm

each component u;(f) may be expressed as

ui(t) = J ui(§)5(t - §)dé (3.27)

1 Mt
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The response y;(¢) = y;(«) resulting from input u;(t) is

yi(t) = f Rt OuiE)ds i = 1,2,...n (3.28)

where h;i(,£) is the response at output terminal i occurring at time ¢ due to a
unit impulse applied to input terminal j at time &. The resultant output Y;(¢) at
the ith terminal due to all inputs j =1,2,...,k, is

k 5
nw = L | wyeouea (3.29)
In matrix from (3.29) becomes

Y6 = %)~ j H(.£)u(E)de (3.30)

where H is the matrix of all zero state responses at time ¢ due to all the unit
impulses applied at time £.

It is often analytically convenient to express h(z,£) in the frequency
domain, i.e., as a transfer function. Accordingly, the Laplace transform is the
analytic tool. For systems where the impulse response is h(r - §) the transfer
function H(s), where s is the complex frequency, is defined as the Laplace
transform of A(¢):

H(s) = L{n(t)}

oo

f h(r)e S'dt

—oo

f h(t- £)e S Bay (3.31)

3.5 ZERO INPUT RESPONSE AND BASIS FUNCTIONS

We next examine the first term on the right in (3.16), i.e., the zero input
response. Reflecting on (3.5) we see that the zero input response is synonomous
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to the (equilibrium) state at time ¢ beginning in x¢ at time #o when the zero-
valued input is applied. Our goal will be to more explicitly define y(x(;0) in
terms of the basis vectors which span the state space W. In doing so, however, we
will revert to scalar quantities to make the analysis more convenient.

Let the linear vector space defining the vector y(x(;0) be spanned by the &
basis vectors a; (i = 1,2,...,k), where the scalar product of any two unit vectors
a; and a; obeys the relation

a;-a = (gjla;) = §;; (3.32)
The vector x(¢) can be represented as
k
x(r) = Z:l a; x;(t) (3.33)
i=

The scalar functional of the vector x(¢) can be written as the linear combination

k
Fd() = Z-'l @i %; (3.34)
i

where the ¢; are scalar constants or functions. Consequently, the scalar-valued
zero input response must be of the form

k
y(xy:0) = i_z_:l‘pi(tﬂ’t)xi(to) (3.35)

where

&= 1 k
xg = Geghxd, .- 28)

and ¢;(¢0,t) (i = 1,2,...,k), play the role of constants for fixed # and ¢(.
The ¢; have a simple interpretation. They form the elements of a k-
dimensional vector ¢, where

<
1

k
- Z:lai ¢i(to.0)
I=

(01(t0.).05(t9,2), ..., 04 (20:1)) (3.36)
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and correspond to the a; of (3.33). Thus, we can write

(3;:0) = ¢;i(tg.t) i =12,k (3.37)

that is, g;(o,t) is the zero input response starting in state a; at time ¢q.

Since, by definition, the a; are linearly independent, we demand that the
functions ¢; also be linearly independent. They, therefore, constitute a set of
basis functions for the system. The vector ¢ defined by (3.36) is the basis
function vector for the system. Accordingly, the scalar-valued zero input re-
sponse (3.35) can also be written as

Y(x0:0) = (@Ixq) (3.38)

3.6 INPUT-OUTPUT-STATE RELATION AND BASIS FUNCTIONS

Returning to (3.16) the scalar form of the input-output-state relation for a
linear, time invariant system admits to

t
) = (@) + f ht - Bu(E)de (339)

to

As such (3.39) satisfies the self consistency conditions of Sections 1.11, 1.12
and 1.13. Equivalently, it has the separation properties of Sections 2.2 and 2.3.

The choice of basis functions ; which satisfy (3.39) is constrained, since
they must induce a relationship between themselves and the impulse response
h(t - £). We shall now embark on examining these constraints more closely for
the purpose of deducing state equations in a more explicit form.

We begin by assuming that the basis functions ¢; are infinitely differ-
entiable and that the derivatives are continuous over the (finite) observation
time of interest. The response separation property of Sections 2.2 and 2.3 spe-
cify that in the time interval 7 < 7 <t the zero-input response at time ¢ starting
with state x(fg) must be the same as the response at time ¢ starting in state x(7).
Using this property the basis functions must therefore satisfy the (time transla-
tional) requirement

(Bt - t0)lx(t)) = @t~ 7)Ix(T) (3.40)

for all tg, t and 7. Clearly, on letting 7o =0 and x(¢() = ay, equation (3.40)
reduces to (for an n-dimensional vector)
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n
o1 = Lt~ Dx) (341)

Equation (3.41) implies that each basis function ¢; can be represented as a linear
combination of the set of delayed bases functions (¢ - 7), (i = 1,2, ...,n). This
is the translational property of basis functions. On differentiating (3.40) n - 1
times we have the following n equations:

(@@ D(r - tg)Ix(tg)) = @ D(t - 7)Ix(1)) (3.42)

The superscript signifies the differentiation. Equations (3.42) can be written in
compact matrix form as

®(t - tg)x(tg) = D(t- 7)X(7) (3.43)

where @ is an n X n matrix. The rows of ® are the vectors ¢,¢(1),...,¢"—D:

[ e (0) ¢y (1) )
(1) (1) (1) (1)

o) = ¢ O vy () o, () (3.44)
¢n-D I oD@ o o "

By setting ¢ = 7 in the right-hand side of (3.43) the relationship between x() and
x(tp) is established as

B0)x(r) = D(¢ - to)x(t9) (3.45)
If ®(0) is nonsingular then x(¢) is determined uniquely. The basis functions

©1:93:-- ¥, can be normalized giving $(0) = I, where | is the identity matrix.
The normalized set of basis functions ; is found through the transformation

¢ = 92710 (3.46)

Equation (3.45) thereby reduces to

x(t) = ®(t - tg)x(to) (3.47)
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We see from (3.47) that &(z - t() is an operator which transforms the initial
state x(z() into the state x(¢). Hence, ®(r - t() is referred to as the state transi-
tion matrix.

3.7 STATE EQUATIONS

In the preceding discussion the separation property of the zero input response
was used to establish the basis function (derivatives) composition of the state
transition operator ®. We will now consider the more general situation of a
non-zero input and the relations between the state transition matrix (basis func-
tion) and the impulse response h(,£).

In the general case the response separation property of Sections 2.2 and
2.3 imply that the input-output-state equation (3.39) must satisfy the time
translation identity

t
(@(r - 19)Ix(tg)) + fh(t‘ Eu(§)ds

to

t
= (@(t- 7)Ix(7)) + fh(t— Eu()dt (3.48)

T

for all ¢, all t >1¢ and all 7, where 7y <7< t. (Note that by letting u(¢) = 6(¢)
and setting x(z) = 0, t( = 0, equation (3.48) yields

h(t) = (@t - 7)Ix(1) . (3.49)

This shows that the impulse response is a linear combination of the basis func-
tions.) Differentiating (3.48) with respect to 7 gives

t t
(%J:Oh(l- Hu(t)ds = 51-— (p(t- 7)Ix(T)) + J h(t - &)u(§)dt

T

h(t - Tyu(r) = :id?(dﬁ(t = Ix(7))

= —(@(t- T)Ix(r)) + (Pt - 7)|x(7)) (3.50)
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Now differentiating (3.50) n ~ | times with respect to ¢ results in n expressions
as follows:

h(a—l)(’ - T)u(r) %(¢(a—l)(t - 7)Ix(7))

@@ V(e - 1) [x(r)) + (@@ V(e - 1) Ix(1)) (3.51)

where a=1,2,...,n, denotes the order of the time derivatives. The set of equa-
tion (3.51) can be represented more compactly in matrix form as

h(t - Du(r) = —[%[Mt - 1)x(7)] (3.52)

where @ is the state transition matrix defined in (3.44) and h is the column
vector

h(t)
h(¢r)

h(t) = | . (3.53)
h(“‘”(t)

Integrating (3.52) between the limits ¢( and ¢ gives

1}

t t
f h(z - 7)u(r)dr f d[P(t - T)x(7)

to to

t
®(c - ()|,
= ®(0)x(r) - P(t- tg)x(tp)
Making use of the fact that ®(0) = I the above integration yields the state equa-

tion

t
x(t) = ®(t - 19)x(tg) + f h(t - §u(t)ds (3.54)

to

Equation (3.54) is the state equation in explicit form for a linear time-invariant
system. It expresses the system state at time ¢ as a function of the initial state at




44 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

time f and the input over the interval [r(.7]. For zero input (3.54) reduces to
(3.47).

Earlier we established (3.39) as the scalar-valued input-output-state rela-
tionship for a linear system. On differentiating (3.39) n - 1 times with respect to
t we have

t
y() = @ - to)Ix(rg)) + J h(t - &)u(t)dg
to

t
y-D(r) = @-D(t - t9)Ix(to)) + f RTD(1 - £)u(k)dt
to
Comparing the results with (3.54) where

t
x(t) = ®(t- tg)x(tg) + fh(t- £)u()dt

to
it can be concluded that
x(t) = ((0),yD(@),...y" D) (3.55)

The above relationship is valid only if h("~1(r) does not contain delta functions
at ¢t = 0. Further, this relationship applies only to the system characterized by a
differential equation of the form

g™ + 0 "D+ gy = mu® +m_ D+ 4 mgu

where € and m are constant coefficients.
Returning to (3.54) we examine the response when the input is u = 8(¢).
Setting x(¢() = 0 and #( = 0 we have

\Y

h(t) = x(t) t=20

h(t) = 0 t <0 (3.56)
Equations (3.56) are interpreted to mean that h(¢) is the system state at time ¢

given that the system was initially in its zero state at time ¢, when excited by
the impulse §(¢). Thus h is referred to as the state impulse response.

| ZAd
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State equation (3.54), which expresses the system state at time 7 in terms
of the initial state at time ¢ and the applied input, can be readily reformatted
into a differential form. Returning to (3.51) and setting 7 = ¢, we have, remem- |
bering that ®(0) = 1 if ®(0) is nonsingular,

x(t) = ®(0)x(r) + h(0)u(r) (3.57)
which is the state equation in differential form. ®(0) relates to the state transi-
tion matrix ®(¢), where specifically ®(¢) is the solution of the differential
equation

(1) = d(0)P(t) (3.58)
Thus, for a system characterized by input-output-state relation

4
V() = @t - t0)Ix(tg)) + f he- Hu@ds > 1

o

the state equations in differential form are, for all ¢,
x(r) = ®(0)x(r) + h(0)u(r) (3.59)
(1) = (p0)Ix(2)) (3.60)

Accordingly, the state at time ¢ is, by (3.54),

t
x(t) = @t~ t9)x(rg) + f h(z - E)u(t)dk

to




4
Canonical Formulation

4.1 INTRODUCTION

The canonical forms (2.26) and (2.27) of the state equations provide for the
central idea of associating a state vector with a linear differential system. The
resulting products of the method described below are expressions for the state
vector along with expressions for the matrices A, B, C and D of (2.26) and
Q@27.

In general a linear differential system can be characterized by an input-
output relationship of the form

LDy = M(D)u @.1)
where the operators L(D) and M(D) are
LDy = 0, D" + D"+ .. 4+ Y

M(D) - ’nka + "lk_]Dk—] + . T Mg
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Dt

difdet i=12,...,k,....n)

f( )dt

The coefficients € and m are constants, and not necessarily real.! Equation (4.1)
can also be formulated as

D!

y = M(D)u 4.2)
for differential operator systems, or as

LD)y = u (4.3)
for reciprocal differential operator systems. Specifically, our procedure of
attaching a state vector to differential systems will be to solve expressions (4.1),
(4.2) and (4.3), and relate the resulting coefficients € and m to the components
of the state vector.
4.2 RECIPROCAL DIFFERENTIAL SYSTEM
For reciprocal differential systems we seek the solution to (4.3):

LDy = u
where

L(D) = 4,D" + D"l + ..+

To solve (4.3) we will make direct use of the Laplace transform. The transform
of the nth derivative of a time function y(¢) can be written as

()
A%

1. In general the index used for both coefficients ¢ and m, i.e.. ¢, and my are not the
same. It is recognized that the order of the differential operators associated with « and v
will be different from one another; however, there is no loss in generality in using a single
subscript m. This will be done in the sequel for convenience only.

sY(s) - s""1p0) - s"-2Dy(0) - ... - D""1y(0)

sY(s) - sn~ly) - s-2yDE) - ... - y@-1(0)

| 7
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where s is the complex frequency, y(@ is the ith derivative of y(0), and Y(s) is
the transform of y(¢). The transform of both sides of (4.3) gives

(08" + 818"+ 4 Q)Y (s) = Uls) + &,y 1(0)
+ (28" + 9, 15" 1+ ..+ 25)y(1-2(0)

oo+ (" + 0, s 4 L+ Q)
(4.4)

On letting
L(s) = Q8" + ¢, 1s" 1+ .+ ¢

equation (4.4) reduces to

= .
- Ve S T LR
Y(s) 1) + e 1) yi=(0) @.5)

The inverse Laplace transform of both sides of (4.5) gives the time dependent
output as

n t
y(t) = ‘_Z;ly“—”(O)soi(t) + f h(t - £)u(E)dg (4.6)
iy 0
where
h(t) = L£{H(s)}
H(sy = 1/L(s)
and
Qs+ Q11+ L+ g
- p-1]ln n-1 i
ity =L { L0) } 4.7)

The time functions y; satisfy the differential equation

L(D)g; = 0
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whereas h satisfies
L(D)h =0

Clearly the y; are linearly independent and qualify as a set of basis func-
tions for the system characterized by (4.3). It follows that (starting at ¢y =0)
the input-output pair (u,y) satisfying (4.3) also satisfies (4.6), since*(4.6) is an
extension of (4.3). A closer examination of this relationship reveals that for
every input-output pair satisfying (4.3) there corresponds an n-tuple of complex
numbers (A1,A2,...,\,,) such that (u,y) satisfies (4.6) for t = O with

pEDQ) = A, i=12,...n (4.8)

(Conversely, for every n-tuple (Aq,...,)\,) the expressions for y given by (4.6),
where each p(-1)(0) is replaced by A; (i = 1,2,...,n), defines an input-output
pair for (4.3);i.e., (4.6) is a solution of (4.3) for each Ay,A3,...,\,;.) By virtue of
the constancy of the coefficients of (4.3) and the time translation properties of
linear time-invariant systems the time-shifted pair Tx(u,y) satisfying (4.3) also
satisfies (4.6). Therefore, the general solution to (4.3) for arbitrary t( can be
written as

n t
y0) = LyEDieo)e e o) + f h(t - Eyu(e)ds 4.9)

to

where ¢ 2 t(.

The state vector x(r) must now be fixed to the system. This can be done
for linear time-invariant systems by relating the constants of (4.3) with the
components of x(zg). A straightforward way to do this, though not necessarily
the most advantageous method for all cases, is to relate the basis functions with
the respective y; of (4.9). From (3.55) the components of x(zg), which are the
coefficients of the basis functions, are

x1(tg) = y(t9)

x2(t9) = y(ry)

xn(to) = y"D(1g)
We readily identify x(t()) as

x(t0) = (¥(t9).yD(tg),....y"=D(tg)) (4.10)

st eagha
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Digressing temporarily an alternative method of establishing the compo-
nents of the state vector x(tp) is seen from expression (4.5). The Laplace trans-
form of the respective basis functions gives

sn-1 gn-2 s 1

Les) " Le) L) L)

Thus, the components of x(tq) are
x1(t0) = €(19)
x2(20) = 4y D(tg) + G1¥(tp)

x3(t0) = €y 3Ntg) + Loy D(tg) + 9,-2(t)

xn(t0) = Gy D(rg) + 4,_19"=D(tg) + ... + LyD(tg) + (o)

Returning to (4.10) the terms ' -1 (7=1,2,...,n) in (4.9) are each re-
placed by their corresponding expressions from (4.10). Accordingly, the solution
to (4.3) for arbitrary t( becomes

t
$(t0) = 6= )xto) + [ e puceya (@.11)
to
which is in agreement with (3.39). By (4.11) the state vector x(z() has been
fixed to the system.
To complete the analysis of the reciprocal differential operator system it
now remains to show that x(¢) qualifies as a state vector. We form x(¢) and y(¢).
If the resultant expressions are of the canonical form (2.26) and (2.27),

x(t) = Ax + Bu
y(t) = Cx + Du

then x(¢) qualifies as a state vector. Considering only fixed systems (systems
where A, B, C and D are constant matrices) it follows from (4.10) that at time ¢

n

x(1) = (¥(0),yO@),...y =Dy (4.12)

and

1]

YD),y D(1),....y"M(r)) (4.13)

x(1)
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From (4.3) the general expression involving the nth derivative of y(¢) is
1
y(r) = %, ()~ 1y D(r) - Qn-z)"""z)(Q: < Ry (1)

Substituting the above expression into (4.13) gives

(1) = (y‘”(t),y‘z’(r),....y‘"‘”m,Ql [u(®) = Gy D) - ...~ Q(,y(l)])
4.14)

Thus, the components of x(¢) are a linear combination of x(¢) and u(z). Hence,
from equations (4.12), (4.13) and (4.14) the components of x(t) are

x1(1) = x2(1)

x2(0) = x3(7)

Q 58
Snlt) = -ng,(t) - —Q”—‘x,,m + ,Z—‘"u(r)
() = x1(0) 4.15)

Equations (4.15) expressed in matrix form become

*1(0) 01 0 ... 0 [[x® 0
x7(t) 0 0 1 .. 0 x,(2) 0
. | ETESRecHEe oy o ] ue @a6)
Q Q-
W0] |- e G :
E
yoy=1[1 o 0] x1(2)
x2(¢)

Xn (1) (4.17)
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or x(1) = Ax + Bu
y(t) = Cx + Du
= (Clx) (4.18)
where
0o 1 0 0 0
0o 0 1 0
e g A e I B =
B S i
Q L
c=1[1 .. 0] D=0 (4.19)

Thus, x(¢) as defined by (4.12) qualifies as the state vector for the reciprocal
differential operator system characterized by equation (4.3).

4.3 DIFFERENTIAL OPERATOR SYSTEM

The differential operator system characterized by (4.2) is of interest for two
reasons: It is possible to realize any differential system as a combination of both
the reciprocal differential and the differential operator types. Secondly, each is
the inverse of the other. For the system of (4.2) we seek the general solution to

y = M(D)u

where

E © MD) = mpD" + mp_ D"\ + .. + mg

The Laplace transform of both sides of (4.2) gives
n
Y(s) = M(s)UGs) - Z.l (=i + ...+ nuli-DO)  (4.20)
i=

i where

M(s) = mps" + mu_1s" 1+ L+ mg 4.221)
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and Us) = L{u(?)} (4.22)

The inverse transform of (4.20) gives the time-dependent output, for £g =0, as

»(t) = :élw,-(t)u"'*”(O) + J; th(t- Eu(E)dk (4.23)
where
0;(t) = L mys" + my 1571+ 4y (4.24)
and
h(t) = L7H{M(s)} (4.25)

From (4.23) the n basis functions y; are linearly independent. They represent
the zero-input responses to the differential operator system. Similarly, h(t) is the
system impulse response. Relating the basis functions with the respective y; we
let, from (4.23),

x1(8) = u(t)

x2(8) = ud()

X, () = u=D(r) (4.26)
Thus, the state vector for the system of (4.2) is
x(t) = (u(),uM(),....u"D(r)) 4.27)
Forming the expression for x(t)
x(t) = @), u®(t),....u"(t))
and comparing it with that for x(t) we see that
x1(t) = u

x3(t) = uld

1}
3.

xp() = u-D = %, 4 (4.28)
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Hence, the input output relation (4.2) can be written as

y = mou + mu + ...+ mu®

moxy + myxy t ...t muyX,

mopxy + ml_fl | SRS m,,i,, (429)

Equations (4.28) and (4.29) comprise the state equations for the reciprocal
differential operator system. Equation (4.28) is the corresponding state vector.

In the representation outlined above the state equations representing the
differential operator system are not of the canonical form

x = Ax + Bu

y = Cx + Du

The corresponding input-output relation for arbitrary #p is obtained by sub-
stituting for each u{i=1(0) in (4.23) the corresponding x;(0) as determined by
(4.28). The result is

t
y(0) = ¢yt = to)x1(to) + ... + @, (¢~ 10)x,(10) + f h(t - E)u(§)dk

to

(@Gt -~ to)ix(ro)) + f th(r- Eyu(E)ds (4.30)
o
44 GENERAL SOLUTION
We seek the solution to the generalized equation (4.1):
L(D)y = M(D)u
where!
LD) = ¢4, D" + ¢, _1D"1 + ...+ ¢

M(D) = m,D" + Q,_1D"1 + ...+ ¢

1. In general the order of the coefficients for € is not the same as those for m. The common
order n is being used for convenience only.
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The Laplace transform of both sides of (4.1) gives
L(s)Y(s) = M(s)U(s) + J(s)

Y(s) = H(s)UGs) + L™ Y(s)J(s) 4.31)

The ratio H(s) is defined as
H(s) = M(s)/L(s)

and the polynomials L(s) and M(s) were previously given as
L(s) = Q8" + sl + .+ ¢
M(s) = mps" + my,_1s"1 + .+ mg

J(s) is the residual polynomial resulting from the Laplace transform of u(z) and
y(¢) at time ¢ = 0. When arranged in powers of s the polynomial J(s) is

J(s) = s""1[€yp(0) - myu(0)]

+ sn=2[Q, Dy(0) - m,Du(0) + ,_1¥(0) = my_1u(0)]

+ [2,0""1y(0) - m,D""1u(0) + ... + ¢y(0) - mu(0)]
(4.32)

The state vector x(¢) can be established by relating the components of
x(tg) to the components of J(s) for tg = 0. Equating x(0) to the coefficients of
s"=1, x7(0) to the coefficients of s"~2, etc., we have

xp =y - muu

x32 = Dy - myDu + ,_1y - m,_ju

Xp = D"y - m,D"Yu + .+ Qy - mu (4.33)
Equations (4.33) can also be written as

X1 = Qy - muyu

X3 =Xt QY - my_u

Xp = Xp-1+ QY - mu (4.34)
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and from (4.1) it is clear that
Xp = =Ry - mou) (4.35)

Solving equations (4.34) and (4.35) for the various X; and y in terms of the
corresponding x; and u gives

: 1
1= o1y ¥ Gnxa + @y = Snoymg)u]

. 1
X2 = Q_n["gn—le + 8, x3 + (8amp_2 — Lamp )ul

: 1
Xp=) = E[‘an + 8y xpy + (fymy - Qymy, )u)
’ 1
Xp = 'Q;["QOXI + (8,mo - Qomy,)u] (4.36)
and

y = Ql[xl + myu (4.37)
n

To qualify x(z) as the state vector it is necessary to demonstrate that x, x, y and
u satisfy the state equations (2.26) and (2.27). By inspection (4.36) and (4.37)
are of the form

x = Ax + Bu
y = Cx + Du
where
-2, 2 0 0] [QMp_1 = 1My ]
2 O O 0 Ly = L-2my
5 I
A = o ke e s et B LR
- 0 [ ot o SR [ ) R R
__QO 0 0 0 | _Q,,mo - Qomy,
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C_[Qn 0 ... 0] D [Qn] (4.38)

Thus, x(¢) as defined by (4.33) qualifies as the state vector representing a system
characterized by differential equation (4.1). The system matrices A and B are
constant nXn and n X1 matrices, respectively. Operators C and D are the

coefficients of L(D) and M(D), respectively.
It was previously seen from (3.39) that the system output is

t
() = B~ to)lx(o)) + f h(t - Bu(t)ds

to

The scalar product above identifies the zero-input response as

Blx) = p1x1 + 9xy + ... t gpx,

Using representat'fon (4.33) and (4.34) equation (4.31) can be written as

Y(s) = Hs)UGs) + 2o

> (4.39)
Xy ;
i=1L(s)""
The components x; of the state vector are identified as the coefficients of the
respective s”~ in (4.33). Applying the inverse Laplace transform to both sides of
(4.39) and comparing the results with (3.39) the zero-input responses are

n-i
e i=12,..., 4.40
o {L(s)} ’ " e

The responses ¢1.,92,...,9, are linearly independent and constitute a set of basis
functions for the system.

45 SYSTEM REALIZATION AND EQUIVALENCE

Given a linear system characterized by a single differential equation of the form
(4.1) one can always construct (realize) an equivalent system comprised of an
interconnection of adders, scalors, integrators and differentiators. In establishing
the meaning of the equivalent system it is assumed that the reader is familiar
with the analytic definitions of adders and scalors. Thus, further elaboration on
these two terms is not warranted. For our purposes we will proceed to define
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integrators and differentiators. An integrator is a system whose input-output
relation admits to the form

D+a)y = u (4.41)

where the constant @ is not necessarily real. The integrator is denoted by
1/(D + a). The state of an integrator at time ¢ is proportional to its output:

x(1) = ky(1)

where k is the constant of proportionality.
A differentiator is a system whose input-output relation admits to the
form

y =(D+bu (4.42)

where b is also a constant not necessarily real. The differentiator is denoted by
(D + b). The state of a differentiator at time ¢ is proportional to its input:

x(2) = ku(r)

A vector x whose components are the outputs of the integrators and the
inputs to the differentiators qualifies as a state vector of the equivalent system.
(It is immediately obvious that by letting the output of an integrator also serve
as the input of a differentiator the dimensionality of x for the equivalent system
is reduced. Although a dimensional reduction of x is highly desirable from a
computational point of view an arbitrary reduction or assignment of state com-
ponents may prove to be futile in providing for a solution of the input-output-
state or canonical equations.) As a general rule the procedure for associating a
state vector with a system comprised of adders, scalors, integrators and differen-
tiators involves first assigning a component of x to the output of each integrator
followed by assigning a component of x to the input of each diffcrentiator not
connected to the output of an integrator through a scalor. This rule is ex-
emplified diagramatically in Fig. 4.1, which shows integrators /; and /3 inter-
connected with differentiators D and D . The adders are denoted by the + signs
and the scalors by the constants ky and k. State vector components x and x3
are assigned to the outputs of integrators /1 and I, respectively. The remaining
component, x3, is assigned to the input of differentiator Dy. Note that the input
to differentiator D5 is directly connected to the output of integrator /3. Thus no
component is assigned Dy . The state vector x consists of components x1, X2 and
X3.

Another observation, not quite as apparent as the one cited above, involves
virtual removal of the integrators and differentiators, thus reducing the system

i

L, R ot B e —Ldﬁ;wm

PSR s < ol
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Figure 4.1 Associating state vector with system of
adders, scalors. integrators and differentiators

to a memoryless interconnection of adders and scalors. Letting the output of the
ith integrator be x; we see from (4.41) that the input to the ith integrator is
equal to (D +a;)x;. Similarly, letting x; be the input to the jth differentiator by
(4.42) the output of the jth differentiator is equal to (D+bj)x;. It can be
reasoned that for an interconnection of adders, scalors, integrators and differen-
tiators the input and output of the system will remain unaltered if the ith
integrator is removed and replaced by an input x; applied to the terminal to
which the output of the ith integrator is connected. The term (D + a;)x; plays
the role of a suppressed output at the input terminal of the ith integrator. In like
fashion the system output and input remains unaltered on removing the jth
differentiator and replacing it by an input (D + b;)x; applied to the terminal to
which the output of the jth differentiator is connected. x; plays the role of a
suppressed output at the input terminal of the jth differentiator. On applying
the above reasoning to the interconnection of Fig. 4.1 we see the system can be
reduced to a series of segregated memoryless interconnections of adders and
scalors, as exemplified in Fig. 4.2. From Fig. 4.2 we obtain by inspection the
simultaneous equations

ka(D+by)x) = x3 — U

(D+by)x3 - (D-ay)xy = ~kjx3

(D +ajy)xy; = x|
Y = Xi
u X3 (D+bp)xy ~(Dtay)xy Xy v
o O — —_°) O——=Q———=0

(D +a3)x; Oe——

x|
(D+by)x; O—

Figure 4.2 Memoryless system.
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Upon rearrangement the above equations become

1
X3 T T

X1 = -baxy * )

k2

Xy = X| T 42X

" 1 1
X3 = (@a1-ba)xy - kix2 (k—2‘b|> o Rl

y =X (443)
which can be written in canonical form as

x = Ax + Bu

y = Cx + Du
where
1 1
[ b2 0 ks ka
A= 1 -ay 0 B=| 0
(ay-by) -k l-b Jak
E a) 2 1 ky 1 k2
]
c=[1 0 0] D=0

Equations (4.43) are the desired state equations for the equivalent system of Fig.
4.1. Thus, the relationship between the system described by the differential
equation

R TR T

L(D)y = M(D)u
and an equivalent system described by the canonical equations

x = Ax + Bu

y = Cx + Du
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comes into sharper focus. Given any proper time-invariant system of finite order
characterized by the above canonical equations, one can always structure an
equivalent system characterized by a single (or set of) differential equation(s) of
the form (4.1).

The above technique is but one of many means to realize a system de-
scribed by an equation of form (4.1). In summary the technique is as follows:
Given a system characterized by the relation

L(D)y = M(D)u

an equivalent system can be constructed of adders, scalors, differentiators and
integrators. The equivalent system is a realization of the given system. A state
vector x can be associated with the equivalent system. Since the two systems are
equivalent it follows that x is also a state vector for the given system. Similarly,
the state equations for the equivalent system may be regarded as the state
equations of the given system.

4.6 METHOD OF PARTIAL FRACTIONS

As a special case of the realization technique we examine the methods of expan-
sion by partial-fractions. Our interest in this method is in the fact that it yields
state equations in which the A matrix is in diagonal form, thus the eigenvalues
(or characteristic roots) associated with the system are readily identified. This,
of course, requires factorization of L(D), which in certain cases may prove to be
a disadvantage of the technique. It is desired that () be factored and put into
the form

L(D) = (D= \)"™MD = 23)*? (D~ )™ (4.44)
where
L(D) = L,D" + ¢, _1D"1 + .+ ¢
al+02+---*°‘q="
The A’s are the distinct roots or zeros of L(D) and the s are their respective
multiplicities.
To illustrate the partial fraction techniques we will analyze two examples:
the case of simple zeros and the case of multiple zeros. For the case of simple

zeros consider the system of integrators shown in Fig. 4.3. We have the condi-
tions @y =@y =...=ay = 1, and ¢y, ¢, ... are constants.

v

Las. 4 -
i e e o e e LI b
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1 Xl =
D= x| S’
1 X
u D- X, @) % v
\\ -~
W e sl e e
J(I
u (D-xy) x)
o—=@
u (D-2y) x) ° O
O——=0O——=0 ® Q

Figure 4.3 System of simple zeros.
Using (4.44) the form of the input-output relation is
D-=-A)D-2)D~23)...(D- \,)y = MD)u (4.45)
Let the system of simple zeros be proper, i.e., the degree of L(D) is greater than
the degree of M(D), and (D - A;), where i =1,2,...n, is not a factor of M(D).

Clearly, by (4.45) the transfer function for the system having simple zeros is of
the form

M(s)
H(s) = (4.46)
AT TE e
On expanding H(s) in terms of partial fractions we have
H(s) = TN S + d, (4.47)
- s=hp  s-Ng s, 9 i

where the constants ¢; are dependent on the A; and the coefficients of M(D). The
term dy is equal to zero if the degree of M(D) does not exceed n- 1.

Digressing temporarily, we verify that (4.47) is the transfer function for
the system in Fig. 4.3. The Laplace transform of the state equations

x = Ax + Bu

y Cx + Du
where A, B, C and D are constant matrices, gives

sIX(s) - x(0) = AX(s) + BU(s) (4.48)
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Y(s) = CX(s) + DU(s) (4.49)
Solving the dynamical equation (4.48) for X(s) results in
X(s) = (sl - A)"x(O) + (sl - A)“lgu(s)
which, when substituted in (4.49), yields for the output
Y(s) = C(st- A Ix(0) + [C(st- A)!B +DJU(s) (4.50)
The output in (4.50) identifies the system zero-state response and zero-input i
response in the frequency domain. We designate each respectively as 2(0:U(s))
and Z(X(s);0). Letting the state x(0) be the xero state the system response is,
from (4.50),
Z(0:U(s)) = [C(st- A) !B+ D]U(s) 4.51)

For zero input the system response is

Z(X(s);0) = C(st - A)"1x(0) (4.52)

As was specified earlier the matrix D is zero for a proper differential system.
Letting the input to the system be the impulse §(¢), and since £{5(¢)} = 1. the
transfer function is identified from (4.51) as

H(s) = C(sl- A)'B (4.53)

In comparing (4.53) with (4.52) it is seen that for the simple case chosen—a
proper system of simple zeros—the transfer function is related to the zero input
response as

H(s) = 2Z(X(s);B)
i.e., the transfer function H(s) is the Laplace transform of the zero input re-

sponse starting in state x(0) = B. Assuming the matrix (s} - A) is nonsingular the
matrix identity for the inverse operator can be written as

adj(st - A)

= AL =
S SI-A|

where |sl- Al and adj(sl - A) are the determinant and adjoint of (sl - A).
respectively. From (4.53) the transfer function becomes

v - > > - - v - o

o DR - o s St st e S v TR A e
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_ Cladj(s1-A)|B
H(s) = e (4.54)

By inspection the state equations of the system of simple zeros shown in Fig. 4.3
are

Xy = ANxg tu
Xy = Nyxp t u
Xp = NyX, t U

=ecyxyp teaxy + .t oopxy (4.55)

G
]

from which the system matrices are

N B e 1
8 X% .. 1

A= B = C = [c1cp...cq] (4.56)
0 M 1

Substituting the expressions for matrices A, B and C in (4.54) yields

c C C
ke g

H =
© s\ s- N2 =Ny

thus, verifying (4.47).
In accordance with the above analysis we assert that for a proper system of
simple zeros characterized by an input-output relation of the form (4.45)

D-A)D-Np)...(D-\y) = M(D)u

where the various A; are distinct and no term (D - ;) is a factor of M(D), the
transfer function H(s) can be represented in partial fraction form (4.47):

c c C
- o S .
s- N\ s- A2 5= Ay

H(s) =

The system as shown in Fig. 4.3 is a realization of the system represented by
equation (4.45). The vector
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x(t) = (x1,x2,...Xp)
defined by (4.55) as

X = Nxj tu i=12,..,n

qualifies as the system state vector. Equations (4.56) are the corresponding state
equations for the system.

In extending the above discussion to the case of multiple zeros we first
consider, for simplicity, the case where L(D) has one multiple zero Ay of order
«. The expression for L(D) becomes

LD)y = [(D-X)*D - Ags1)--- (D~ M)y

M(©D)u (4.57)

The corresponding expression for H(s) can be written as

M(s)
H(s) = (4.58)
(5= A6~ Ag+1)--- (5= Ny)

Expanding H(s) into partial fractions gives

€] €2 Ca
H(s) = + 1 b
G-2)°  GE-n) - A
C
el oo R R SN 4.59)
(5 = Aa#1) (s-2y)

By (4.59) it is seen that, in essence, one multiple zero of order a has the
equivalent effect of adding « integrators to one of the integrator circuits. This is
shown graphically! in Fig. 4.4. (Obviously, for the case of more than one
multiple zero, say m multiple zeros each of order a.B.7.....£, respectively, the
equivalent effect would be to add « integrators to the respective circuit labeled
a, B integrators to the respective circuit b,...£ integrators to the respective
circuit labeled m.) Choosing the output of each integrator as an element of the
state vector x = (x1.x3,....X,) the state equations are, by inspecticn,

1. From Zedeh and Desoer. Linear System Theory, McGraw-Hill, New York 1963.

oy G
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©-
1
Xa | PN
Cat
Xa+1
Cn
Xn

e
I
=
<.
+
=
[S)

=
R
|
>
oy
=
R
+
R

y=cixy teyxy t .t epx, tdo (4.60)

wherein it is clear that this choice of x qualifies as a system state vector. Hence,
for a proper system characterized by the input-output relation

D~ 2D~ Agt1)--.(D= )y = M(D)u

where the various A; are distinct and no term (D - \;) is a factor of M(D), the
transfer function H(s) can be represented in partial fraction form (4.59). The
system of Fig. 4.4 is a realization of (4.57). The corresponding state equations in
canonical form are, from (4.60),

Ax + Bu

-
1]

(Cix) + dou

<
I
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where
™ 10 0] (0]
0 A 1
A=l0 0 X% 1.. 0O B=|0
L0 0 O S Ll_

C=1[cicz - cnl




5
Solutions to the
Canonical Equations

5.1 FIXED CONTINUOUS-TIME SYSTEMS: TIME DOMAIN ANALYSIS

The differential equations governing the behavior of linear continuous time
systems were established in (2.26) and (2.27) as

x(t) = A()x(r) + B(r)u(r)

y(t) = C()x(r) + D(r)u(r)
For fixed systems the matrices A, B, C and D are fixed, i.e., they are inde-
pendent of time. In determining the time-dependent solutions to (2.26) and

(2.27) for fixed systems we first consider the homogeneous form of (2.26)
where u(t) = 0. Equation (2.26) becomes

%x(l) = Ax(t) (5.1)
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where the matrix A is a constant matrix. Solving (5.1) for x(z) between the time

limits ¢( and ¢ we have
! t
Ix(t
f &l . f dt
x(1)

to to
MO
nX(fo) = A(z- tg)
x(t) = AUT10x(10) (5.2)

Upon comparing (5.2) with (3.47), wherein
x(t) = @(1- 19)x(10)
it is seen that the state transition matrix can be represented as

eAt

(- tpy)

& 2
1+ A(t-1g) + A2(i§"°—) + (5.3)

Thus, by (5.3), ®(¢) is also referred to as the fundamental matrix.

The complete time-dependent solution to (2.26), where A and B are con-
stant matrices, is readily obtained through the method of variation of the
parameter. Assume the solution to (2.26) is

x(r) = A1) (5.4)
where f(¢) is to be determined. The time derivative of solution (5.4) gives
x(r) = APUT10g) + AU-104) (5.5)
Substituting (5.4) into (2.26) and using identity (5.5) gives

x - AcAU=10)g(r)

n

Bu(?)

eAU-T0)§(y) (5.6)
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Multiplying each side of (5.6) from the left by e AU=10) and integrating be-
tween the limits (-20,¢), assuming f(-°) = 0, we have

t t
J A DBu(g)at = f df(®)

t
f(t) = f e AE-10gy()dt

which, when substituted in solution (5.4), gives

{4
x(t) = eAU=10) J' e AE-10)Bu(g)dt

—o0

14 t
eAll=to) j Oe‘A“"O’Bu(s)ds + f AU-DBug)dE  (57)

—o0 to

Evaluating (5.7) at ¢ = t gives the initial state as

to
x(to) = f e AE-1dBy(t)dE

o0

Therefore, solution (5.7) becomes

T
x(t) = eAU=10x(zg) + f AU-DBu(E)ds (5.8)
fo
t
= @t - to)x(to) + f (- £)But)dt (5.9)
to

For fixed systems it is convenient to establish #g =0, in which case equations
(5.8) and (5.9) become

t
x(1) = eAlx(0) + f AU-Dgu(g)ds (5.10)
(1]

t
B(1)x(0) + de'(t— £)Bu(¥)dt (5.11)
0
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Finally, on substituting (5.11) into (2.27) the input-output-state relation for a
continuous-time system is

t
y(?) = C[‘I’(!)x(O) #* f ¢({—E)Bu($)d£:l + Du (5.12)
0

Equations (5.11) and (5.12) are the system state equations. It is clear from
(5.11) that the system state at time ¢ can be determined if the system state at
some previous time ¢y (zg <t) is known and if the input u(¢) is known. The
manner in which the initial state is “‘transformed” is characterized by the make-
up of ® and how the input is applied, i.e., by the matric operators A and B. The
system output (5.12) reflects a dependency on all four operators.

5.2 FIXED CONTINUOUS-TIME SYSTEMS: FREQUENCY DOMAIN
ANALYSIS

For fixed continuous-time systems the differential equations to be solved are

1}

x = Ax + Bu

y = Cx + Du

where A, B, C and D are constant matrices. From previous discussions the
method of Laplace transforms was seen to be a convenient method for solving
equations of this form. It was established in (4.48) and (4.49) that the Laplace
transform of both sides of the above equations gives, respectively,

sX(s) - x(0) = AX(s) + BU(s)

Y(s) = CX(s) + DU(s)
From (4.48)

s1- A Ix(0) + (s1- A)"'BU(s) (5.13)

X(s)

X1(s) Lix1(0)}

X1(s) L{xy (1)} (5.14)

X (s) £{xn(t)}

dal it ki asias

S

ettt Sl N,

b,
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which, when substituted in (4.49), resulted in the input-output equation

Y(s) = C(s1- A 'x(0) + [C(s1- A)"'B + D|U(s)
Yy(s) L{r1@®)}
_|ho| _ | £l .
Y6)| | L)

The zero-state response, i.e., x(0)=0, identifies the transfer function
matrix H(s) in (4.50) as

H(s) = C(sl- A)'B + D (5.16)

e Lt e ey (5.17)
: Hyy(5) HyaS) - Hyn(S)
Writing the zero-state response as
Y(s) = H(s)U(s) (5.18)
the ith component of the transform vector Y(s) is
Yis) = HyUi(s) + HaUx(s) + ... + HyUp(s) (5.19)

It is apparent from (5.19) that Hj;(s) is the transfer function between input u;(z)
and output y(¢). In Section 3.4 h;;(t) was identified as the response at the ith
output terminal due to a unit impulse applied at the jth input terminal. We
conclude, therefore, that

Hyi(s) = L{hy(D)} (5.20)
Equation (5.10) gave the general time-domain solution for a fixed system
as
t
‘ x(t) = ®(1)x(0) + f‘b(t—E)BU(Z)dE

0
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where, for convenience, rg = 0. Applying the theorem for the Laplace transform
of a convolution the Laplace transform of the above equation is

X(s) = D(s)x(0) + B(s)BX(s) (5.21)
where
B(s) = L{P(r)} (5.22)

®(r) has previously been identified as the fundamental matrix of the system.
Comparing (5.21) with (5.13) the Laplace transform of the fundamental matrix
is

&(s) = (s1- A" (5.23)
or

Al = d(r) = L1 - A (5.24)

Thus, the fundamental matrix ®(z) is the inverse Laplace transform of the
matrix (s1- A)"l. Accordingly, t‘ﬁ(s) is referred to as the characteristic fre-
quency matrix of the system.

Using the matrix identity for an inverse operator equation (5.23) can be
written as

adj(sl - A)
[sh-

&(s) = (s1- A)! (5.25)

where |sI - Al and adj(sl - A) are the determinant and adjoint of (sl - A), re-
spectively. For a system of order n, A is an n X n matrix. Therefore the deter-
minant [sl - Al is a polynomial in s of degree n. which can be written as

Ist= Al = 5 + aps"! + aps"2 + ... + a,_is + a,

(=A% (s = A)*2...(s = Ay

p(s) (5.26)

Polynomial (5.26) is the characteristic polvnomial of the system. Its zeros
A1, A2. ... Ay, (those values of s for which (sl = Al = 0) are the characteristic roots
or eigenvalues of the system. Accordingly, the equation

Ist-Al =0 (5.27)

is called the characteristic equation of the system.

- A 2 o
&.¢'N S i e PR N ——..7t P i -
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For the simple case where # is 2 or 3 expansion of adj(sl - A) in (5.25) by

cofactors suffices to determine $(s). Let (st - A);; denote the (n—- 1) X (n- 1)
submatrix of (sI - A) formed by deleting row / and column j. The scalar

cij = GGt - Al (5.28)

is the cofactor of the (i,j) element of (sl- A). The nXn matrix (s1- A)'
formed by all the ¢;; elements is the cofactor matrix of (sl = A):

€11 €12 - Cin

" ’ €21 €22 ... €y
cofactor (st - A) = (st- A) = (5.29)

Cnl €n2 - Cpn

The adjoint of (s - A) is the transpose of the cofactor matrix of (s1 - A):

C11 €21 - Cnl—l
~—, Ci2 €22 ... Cp2
adj(s1 - A) = (51-A) = & (5.30)
Cin €2 Cnn

The tilde denotes the transpose.

In principle the above procedure provides for determining &(s). However,
for values of n greater than 3 this procedure becomes impractical since, essen-
tially, n2(n-1)X (n-1)! multiplications are involved. A more practical tech-
nique, which also lends itself to machine computation, involves extending the
method of expanding a rational function to matrices whose elements are rational
functions. We let

(61~ Ay = ls_?% . %% (5.31)
where
B(s) = Bys" ! + Bys”2 + ... + B,_25 + B, (5.32)
and

ps) = s + aps"~1 + a2 + ..+ a,
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The coefficients Bg,By,...,B,_ are constant n X n matrices, and p(s) was previ-
ously defined in (5.26). Given an nXn matrix A the coefficients a; of the
polynomial p(s) and the coefficients B; of B(s) are determined by the following
algorithms:!

~-—:rtr (Bi_1A) i=

I
o
S

. (5.33)

B; = Bi_1A + gl i=12,...n (5.34)

The above algorithm leads to the following relations between the coefficients a;
and Bi :

ayp = -tr(A) By = |
ay = "—;'tr(BlA) B; = BpA + gyl
az = "%"(BzA) By = BjA + oyl
1
ap-y = =57 t(By2A) By-1 = By2A + g, gl
ay, = -—tr(B,_1A) 0 = By_1A + a,l (5.35)

Equations (5.35) are a more efficient procedure in computing (s1 - A)~1. Only n
matrix multiplications are required as opposed to n2(n- 1)(n - 1)! using the
method of expansion by cofactors.

To complete the computation of ®(¢) in (5.24) we compute the inverse
Laplace transform of (s1- A)~!l. Equations (5.35) result in a matrix for
(st - A1 whose elements are rational functions. The inverse Laplace transform
of a proper rational function (considered to be the ratio of two polynomials
where the degree of the numerator is greater than that of the denominator) is
most readily obtained by expanding the rational function into partial fractions.
As an example let £(s) be a proper rational function in s defined as

F(s) = N(s)/Q(s) (5.36)

1. V. N. Faddeeva, “Computational Methods of Linear Algebra,” Dover Publications, Inc.,
New York, 1959.
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If the degree of N(s) is greater than that of Q(s), and if F(s) has poles at
$ =N A2,..A, and the order of the pole at s=); is a; then (5.36) can be
factored as

|
Yy : 5.37
Zn Y- Ny G2

n 9
FE) = 1
=1 i=

l

A hint of the structure of (5.37) was first seen in (4.58) and (4.59). Each
nonrepeated factor s - Ag in the denominator of (5.37) results in a term

1
ool e
le = o)

whereas each of the repeated factors (s - A;)% give rise to &; terms

I I 1
P £ Y
G- (o ) Vs-n)

For a simple first-order pole at s = Xy the coefficients ¥;; may be evaluated by
the formula

Vo= 0G| (5.38)

Q(s)/(s = Ag) Is=ng
= A (5.39)
D(\q)

where D(Aq) is the derivative of Q(s) evaluated at s = Aq. For a pole of order a; at
s =N we have

Yy = =k "“’_i[ NG) J (5.40)

(5= )t ds | Q(s)/(s = W) ls=;

where = 1,2;...,04.

To obtain the inverse transform of F(s) consider the following: The
Laplace transform of a time function of the form f(¢) = ¢"~1/(n - 1)! is

tn-1 1
L{(n__—“—l)!} s (541)
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Secondly, the transform of the product of two functions, wherein one of the
functions is an exponential, is

L{fltye™M} = F(s+)) (5.42)

Combining the ideas of (5.41) and (5.42) we can write

£ ’n—l Y Ly l
MY = (5.43)
(n-1)! (s + A"

Applying the rationale of (5.43) to (5.37) the inverse Laplace transform of
(5.37) can be written as

1@y = £YFEs)}

n 9
{,Zuz‘ B (s—)\,)’}

Lerfwy i

1)

(5.44)

Expression (5.44) prescribes a method for determining the inverse Laplace trans-
form of each element of $(s) (st - A)L, thereby determining ®(z). The matrix
form of ®(¢) can be established by expanding (5.37). We ebtain

n'sn ¢

$6G) = we e
&(s) = IZ; ’; Y, S (5.45)

where j=1,2,....n"<n. The inverse Laplace transform of (5.45) gives

n'sn

®(t) o AI = Z Aj ZY’] (1 ) (546)

where (5.44) served as a guide to establish the general form of ®(¢).
To illustrate the use of equations (5.37) through (5.44) consider the in-
verse Laplace transform of

-25%- 115 - 16

s2(s +1)2(s +2) B

F(s) =
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For the term s2 the multiplicity a; is 2. The respective coefficients Y deter-
mined by (5.40) are Yj; =2 and Y,; =-3. Similarly, the coefficients Yj; associ-
ated with the degenerate eigenvalue of (s + 1)2 are Yy =0 and Y33 = 3. From
(5.38) or (5.39) the term (s + 2) has the coefficient Y13 =-4. Thus (5.47) can
be written in form (5.37) as

2 3 3 4
Tl = = = = % - 548
B 2 e o3 oAt
By (5.44) the inverse Laplace transform of (5.48) is
f(6) =2 - 3t + 3tet - 4eX (5.49)

Clearly, the inversion of the n X n matrix &(s), using the above method, requires
n? elemental inversions.

5.3 FIXED DISCRETE-TIME SYSTEMS: TIME DOMAIN ANALYSIS
A linear discrete-time system of fixed form i< eoverned by a system of difference
equations of normal form!, from (2.26) and (2.27),
x(k +1) = Ax(k) + Bu(k) (5.50)
y(k) = Cx(k) + Du(k) (5.51)

where the index k =1,2,...,% prescribes the discrete-time sequence and the
matrices A, B, C and D are constant. The solution to (5.50) may be found
directly by recursion. Substituting in (5.50) discrete values of k we have

x(1) = Ax(0) + Bu(0)

x(2) = Ax(1) + Bu(l)
AZx(0) + ABu(0) + Bu(l)
Ax(2) + Bu(2)
A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

u

o

x(3)

(]

k-1

Akx(0) + QZ_'.G A%Bu(k - £- 1) (5.52)

i

x(k)

1. See, for example, Freeman, H., Discrete-Time Systems, John Wiley and Sons, New York
(1965).

gre
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or

k-1

x(k) = Akx(0) + Z:()A"‘““Bu(Q) (5.53)
Q:

The fundamental matrix for a discrete-time system becomes, from (5.52) or
(5.53),

(k) = Ak (5.54)
where
Ak = AIA; AL
Al = Ay = ...AL = A (5.55)

In terms of the fundamental matrix ®(k) the state equation (5.52) or (5.53)
becomes, respectively,

k-1
x(k) = @()x(0) + L @(OBu(k-¢-1) (5.56)
or
k-1
x(k) = ®(k)x(0) + L, @(k- ¢~ 1)Bu(k) (5.57)
Q=

Substituting (5.56) into (5.51) the output equation becomes

k-1
y(k) = CP(k)x(0) + ZOCCI’(Q)Bu(k—Q- 1) + Du(k) (5.58)
Q=

7 An alternate expression for the output is readily derived using the state vector
form (5.57). Solutions (5.56) and (5.58) are the discrete-time analogs of (5.11)
and (5.12), respectively. The corresponding formulation of the discrete-time
state equations is given in Appendix C.

5.4 FIXED CONTINUOUS-TIME SYSTEMS: DISCRETE INPUTS

In many continuous-time systems the input is often a sampled signal, thus char-
acterizing the input as discrete. There are two kinds of sampled signals (and
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associated discreteness) we will consider: (1) the piece-wise constant signals
where the sampling function is a pulse of constant amplitude over a time interval
(Lg tx+1) 18,

u(t) = u(rg) e <t < g4 (5.59)

and (2) the impulse-modulated signal represented by a modulated delta-function
series

@

u(titg) = Z u()b(t - ty) (5.60)

£=0

Signals having the forms of (5.59) and (5.60) are respectively depicted in Figs.
S.l1a and 5.1b. In generating u(zy ) a zero order holding circuit of sorts is implied.
The various # are arbitrary but satisfy the condition tx+y > .

From previous discussions the response of a continuous-time system to
sampled inputs can be readily determined. In fact, it can be determined with
considerably more ease than would be required to determine the response for all
time. The continuous-time system is governed by the dynamic equation

x = Ax + Bu
wherein the solution is
A

x() = B(O)x(tg) + J Bt - £)Bu(t)ds

o

Figure 5.1 Sampled signal.

’ -
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Let the input be the sampled signal of (5.59). It is a signal of constant amplitude
over a prescribed time interval. Then

i
x(t) = ®(1)x(1g) * ‘J“l’(t~ £)Bu(ry)d (5.61)

to

Now let the input consist of a series of constant vectors of form (5.59). Then at
time t + 7. where 0 <7 < t34] - ty for each time interval (tg,tx+1), we have

tk+T
x(rk+r)=¢<r>x(rk>+f B +7- HBU(AE  (5.62)
lk

If the “staircase” input changes uniformly at intervals 7 = k7 equation (5.62)
becomes

kT+t

x(kT + 1) = ®(1)x(kT) + J- ®KT + 7 - £)Bu(kT)dE (5.63)
kT
Finally, for 7=T
kT+T
x(kT+T) = ®(T)x(kT) + j ®KT+ T- §)Bu(kT)ds  (5.64)
kT

Clearly (5.64) can be written as the difference equation

x(k +1) = Ax(k) + Bu(k) (5.65)
where
A= ®7T) =M (5.66)
T
B = j; (T - §)dE (5.67)

Thus, the continuous-time system governed by

x = Ax + Bu
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having as the input a piece-wise constant signal is equivalent at sampling instants
to the system governed by the difference equation (5.65).

To illustrate some of the theory developed consider a simple system
governed by the differential equation

2
(Zdt_z + Sad; + 4>y(1) = u(r)

Let the input to the system be a continuous-time signal in one case, and in
another case let it be the sampled signal u(t) = 2% for kT <t < (k + 1)T, where
k=0,1,2,...,%2. From equation (4.19) the system matrices are

sl e

c

(11 D=0

The state transition matrix ®(¢) is the inverse Laplace Transform of (sl - A)~1,

where
s 1 7!
-4 s5+5
sikS 1
CL-a s Graxs+)

By (5.39) and (5.44) we can evaluate the inverse transform of each polynomial
element of the above matrix giving

1

(st- Ayl

Y- Ayh

1 [ 4ot - o4t ot - o4t ]
~4(et - e“") et + 4074

d(z)

3

For the case of a continuous-time input the state vector is, from (5.10),

1| 4et- e—4t el - o4t
MiE= 3 ~4(e ! - e—-4t) e~ + 4741 x(t0)

| [ e @0 - et ”
+ —
3 f, e~ (=8 4 4¢-4-b) u(®)
0
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For the staircase input u(t) = 2K equation (5.64) specifies the state vector as the
difference equation

4¢T-¢4T  T-4T

] x(kT)

1
x(kT+T) = <
( ) 3 [_4(e—T_ e4T) - T+ 44T

i_ e~T+ le-4T
e ha 4 2*
: eT+e4T

which is of the form
x(k +1) = Ax(k) + Bu(k)

Hence, by (5.56) the state vector for the continuous-time system having a stair-
case input is

k-1
x(k) = Akx(0) + ZOI\QE 2k-e-1
Q=

where A and B are determined by equations (5.66) and (5.67), respectively.

We next consider the continuous-time system wherein the input is the
series of impulses represented by (5.60). Referring once again to state equation
of a continuous-time system we have

t
x(t) = ®(O)x(to) * f B(t - £)Bu()ds

to

At time ty + 7, where 0 <7 < ty41 - tx. we have on substituting (5.60) into the
above state equation

x(tg +7) = D(1)x(tx) + P(r)Bu(ty) (5.68)

Equation (5.68) is the state equation of a continuous-time system where the
input is a series of impulses occurring at times #x (k=0,1,2,...%0). If the im-
pulses occur at uniformly spaced time intervals where tg4+1 -t = T, equation
(5.68) gives the state equation for this condition as

x(kT + 1) = ®(r)x(kT) + P(1)Bu(kT) (5.69)
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where 0 <7 < T. Lastly, for 7 = T we have as the discrete-time state equation for
a continuous-time system

X(kT+T) = &(T)x(kT) + &(T)Bu(kT) (5.70)

5.5 FIXED DISCRETE-TIME SYSTEMS: z DOMAIN ANALYSIS

Sampled data systems can be considered as continuous-time systems operating
on discrete-time functions. The 2 transform addressing discrete-time systems is
introduced for the same reason that makes the Laplace transform useful in the
study of continuous-time systems. Procedures similar to analyzing continuous-
time systems in the frequency domain will be followed to analyze discrete-time
systems in the z domain (where z is a complex variable).

The Z transform of a discrete-time function fTk) is a power series in z7 1.
The coefficients f{k) are the amplitudes of the discrete-time signal. We have

Z{f®} = X f)z* (5.71)

k=—

where Z{f(k)} is the Z transform of flk). For discrete-time systems those values
of flk) where k <0 are of less interest than where k >0. The discussion to
follow will, therefore, center around situations of positive values of k. Accord-
ingly, our consideration of (5.71) will be bound by the values £ =0,1,2,...,.

From Appendix D the Z transform of the first forward difference equa-
tion is

(A0} = Z{fk+1) - f(k)}
= - DK} - 2f(0) (5.72)
where
2{f(k)} = kZO f(K)zk = f0) + f)z) + f2)z2 + ..
Z{fk+1)} = () + fQ)z7! + f3)z2 + = [ SR} +1(0)] (5.73)

The characterization of a linear discrete-time system of fixed form was speci-
fied earlier by equations (5.50) and (5.51):

S e o o dadoadaei o Atigiiien bl batile o
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x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

Taking the = transform of both sides of the above normal equations we have,
using property (5.73),

zX(z) - zx(0) = AX(z) + BU(z) (5.74)
Y(z) = CX(z) + DU(z) (5.75)

where

U@z) = Z{u(k)}
X(z) = Z{x(k)}
Y@) = Z{v(k)}
Solving (5.74) for X(z) we have
(z1 - A)X(z) = zx(0) + BU(z)
X@z) = (z1- AY Lzx(0) + (z1- A)"!BU(z) (5.76)

which, when substituted in (5.75), gives the discrete-time output as

Y(z) = C(zl- A) 'zx(0) + [C(zI-A) !B+ D]X(z) (5.77)

Referring to state equations (5.56) and (5.58) the % transform of the output
equation (5.58) gives

Y(z) = CB(z)x(0) + [CD(z)z"'B + DIX(2) (5.78)
where
Bz) = (@)} = Z{AK) (5.79)
Comparing (5.78) with (5.77) we see that

d(z) = (21-AY'z = (1- Az 1)] (5.80)
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Result (5.80) can also be derived directly from the definition of the = transform
for Ak:

Z{at}

!

Z Ak k
k=0

u

(z1-A)lz ; (5.81)
The zero-state response specified by (5.78) is
Y(z) = [C®(z)z"!B + D|X(2) (5.82)
Hence, the transfer function matrix for a discrete-time system is
H=cdz) 1B+ D (5.83)

Proceeding in the same manner as in Section 5.2 the inverse transform
operator &(z) can be written as

z adj(z1 - A)

A n = = 2
P(z) = z(z1- A) Ry

zB(z)  zB(z)

|zI - Al p()

(5.84)

where B(z) and p(z) are polynomials in z. Replacing s with z in (5.26) and (5.32)
the ratio &(z) can be evaluated as prescribed by (5.31) through (5.35). Repre-
senting B(z) and p(z), respectively, as

B(z) = B()Zk_1 = B].’!k_2 * oo Brogz + By

and

p(z) = 2+ a[z""'1 + azzk—2 B A dp g2t oy

equation (5.84) becomes

B()Zk_l * B]zk—2 T B oz By

@) = (5.85)

&1 % (1121‘“2 R a;‘-z‘I
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Clearing the fraction we have

@k +a 2% +ayz¥ 2+ . tagz +ap)

(BozF 1 +B1zF 2 + ... + Bgoz + B )zl - A)

Bozk = B()Azk_1 + Blzk_l + ...+ Bg-1z - B A

Equating the coefficients of like powers of z gives

By = | a; = -trA
B; = BpA + ayl a = ——;‘tr(BlA)
B, = BjA + ajl az = —%lr(BzA)
1
Bx-1 = Bg-2A + a1l ag-1 = - F’"(Bk—zA)
0 = Bg-1A + agl ay = - %tr(Bk_lA) (5.86)

which results in the algorithms

g = ~Tu@A) (=120 (5.87)

B; = B;_1A + gl (i=1,2,...k-1) (5.88)

The most commonly used methods to determine ®(k), the inverse trans-
1 form of (5.84), include inversion by partial fractions, inversion using the inver-
R . sion integral, or inversion by long division. Each of these techniques requires
4 addressing the individual elements of the matrix &(z). Consequently, the tech-
niques are laborious. To determine the signal element f{k) corresponding to each
element f(z) in 3(2) it becomes necessary to expand f{z) into a power series in
z-1. The expansion coefficients f(k) are the amplitudes of the discrete-time

signal.
Inversion by partial fractions involves factoring and looking-up in an
< appropriate table the discrete-time function corresponding to the transform to i
; be inverted. Appendix D contains a typical conversion table, which of course,
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can be expanded considerably. The task of factoring the ratio of two poly-
nomials was discussed earlier. The associated z-formulation takes the form of
equations (5.36) through (5.40).

A more elegant technique, which also involves factoring, is use of the
inversion integral

o) = = & sz (5.89)
21r[ J
-
From the calculus of residues the evaluation of (5.89) resuits in

fk) = 2 residues of f(z)zk~! at its poles
within circle of convergence of f(z). (5.90)

For a pole at z = \; of multiplicity o; the residue of f(z)z*~! is given by

. - aj—1
Residue f(z)z*-1 at} -k LR R NAEF T (591)

pole z = Aj, order o; z_,";,. (- 1)! dzoj1

A third method of inversion of the Z transform applies when f(z) is a
rational function. Both the numerator and denominator can be expressed as
polynomials in z~1. Using long division the numerator is divided by the denomi-
nator giving a series expression in powers of z~!. The numerical values of the
coefficients are the f{k). This method is particularly useful when tables of 2
transforms or the inversion integral cannot be used. However, a general expres-
sion for flk), as can be obtained by the other two methods, is not readily
achieved through the long division method.

To illustrate the above three inversion methods consider the following
example. We want to determine the inverse transform of the simple complex
function

2z2- 4z

e = z22-4z+3

by each of the three methods.
(1) Partial Fractions. Factoring f(z) we can write

222- 42

@ = 22-4z+3
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22(z- 2)
G- 1)z-3)

From Appendix D:
fk) =1+ 3k

(2) Inversion Formula. The function f(z)zk—! has simple poles at z =1 and
z = 3. There is no pole at the origin. Thus from (5.90)

222-4z 4, 222-4z 4,
3 = —— k" + = K-
S 1) 21="3 % z=1 z=1 & z=3

1+ 3k

(3) Long Division. Expressing both the numerator and denominator of f{z) as
polynomials in z=1 we have

2-4z1
z - —_—
1@ 1-4z-1+3272

The long division gives

2+4z71 + 10272 +28273 + 82274 + ...
1 - 427! + 32°2)2- 427!
- 2-82-14+622
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5.6 FINITE-STATE MARKOV SYSTEMS: INPUT-FREE

The analysis considered thus far has been deterministic! in nature, i.e., it was
assumed that the system states at time ¢ could be determined with certainty.
This certainty was a manifestation of exact knowledge of the characterization
matrices, the state at some initial time #(, and the input applied over the time
interval (zq,t). For those systems, such as large scale systems, where the charac-
terization matrices are not known exactly, it can be expected that the system
state and output can only be described statistically—even though the input and
initial state are known exactly. These systems are called stochastic systems. They
are characterized in terms of probabilities of being in a specific state at some
given time, and in terms of state transition probabilities associated with each
discrete state. If the discrete states that the system can assume are finite in
number then such systems are finite-state stochastic systems.

In formulating the probabilistic description of finite-state stochastic
systems we define the following quantities: Let the probability that the system
is in discrete state j at time (k + 1) be p;(k + 1). At an earlier time k the system
can be in any discrete state i with probability p;(k). For each state i there
corresponds a state transition probability ;; that the system will transition from
state / to state j. We stipulate that ;; is independent of the past history of the
system, i.e., it is independent of how the system arrived at state j from state i.
(Systems that possess this property are known as Markov systems.2) Thus, the
probability that the system will be in state j at time (k +1) is

Pl +1) = Lgipk)  j = 1.2..n (5.92)

where n is the total number of discrete states the system can assume. (The index
n should not be confused with our previous n used in establishing the order of
the differential equation governing the continuous-time system.) Equation
(5.92) can be written in vector form as

p(k +1) = P(k)p(k) (5.93)

1. For the sake of completeness our previous formulation assumed that all defined quanti-
ties were readily calculable. It must be recognized that this is true only for simple cases.
For complex systems these quantities are not readily ascertained and must be treated
statistically .

2. For a more complete discussion of Markov chains see, for example, Feller, W., An
Introduction to Probability Theory and Its Applications, Vol. I, 3rd Edition, John Wiley
& Sons, New York (1968).
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where p is an n-dimensional state-probability vector and ® is an nXn state
transition probability matrix. Clearly, from (5.92) and (5.93) @ is of the form

W“(k) ‘Plz(k) ¢1n(k)
T P e S, Bt ol Eles S ) (5.94)
1 %) epak) ... @, (k)

where @j; must satisfy the following probability conditions:

% >0 for all i,j (5.95)

/;1 i = 1 for all i (5.96)

If the elements @j; are fixed then (5.93) becomes
p(k +1) = ®p(k) (5.97)

The derivation of (5.97) was based solely on probabilistic reasoning; inde-
pendent of the linear, time-invariant conditions of Chapter 3. However, formula
(5.97) which describes a zero-input probabilistic system, is of the same form as
state equation (5.50), which describes a zero-input, linear, time-invariant system:

x(k +1) = ®&x(k) (5.50)

Moreover, the system described by (5.97) need only be a finite-state Markov
system. The likeness of (5.50) and (5.96) suggests that a class of nonlinear
systems, where the states are represented in terms of probabilities, is governed
by linear equations. Therefore, the solution of (5.97) could be obtained by
following the methods of Sections 3 and 5. By direct recursion (5.97) becomes

p(k) = ®*p(0) (5.98)
Hence, for input-free Markov systems the state probabilities are completely
“determined” by knowing the transition probability matrix and the initial state

probability vector. The evaluation of (5.98) is best carried-out in the z domain,
wherein the 2 transform gives

zP(z) - zp(0) = PP(z)

P(z) = (1- ®z71)-1p(0) (5.99)
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We demonstrate the use of (5.99) through simple examples below.

In general Markov systems can be represented graphically by state dia-
grams (signal flow graphs) as shown in Fig. 5.2. The nodes are the states i and
the directed branches are the state transition probabilities Gji- The states can be
grouped into mutually exclusive state sets, whereby the system can change from
every state to every other state within each state set. Those state sets that once
entered can never be left are called ergodic sets. Their associated states are
recurrent states. Those state sets that once left can never again be entered are
called transient sets. Generally, Markov systems can have many ergodic and/or
transient state sets as shown in Fig. 5.3. States 1, 2, and 5, 6 comprise ergodic
sets whereas states 3,4 are a transient set. Each set is mutually exclusive of the
other. As a minimum a Markov system must have at least one ergodic set. Such a
system is an ergodic system. For a system having more than one ergodic set but
no transient sets the state sets are said to be disjoint. The system can be sepa-
rated into a number of independent subsystems, one for each ergodic set.
Further, if an ergodic set has at least one state such that the system must return
to this state periodically the ergodic set is periodic, otherwise it is regular. We
shall expand the above statements through the examples below.

Consider the simple system of Fig. 5.4, which has an ergodic set but no
transient set. We desire to evaluate the probability that this system will transi-
tion to states 2 or 3, given that the system is in state 1 at time k=0. The
transition matrix for the system of Fig. 5.4 is

n ) (%)
(T3 - & ;oto‘%

Figure 5.2 Two-state Markov system. Figure 5.3 Six-state Markov system.
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Figure 5.4 Simple ergodic system.
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where the transition probabilities satisfy conditions (5.95) and (5.96). Given
that the system is in state 1 at time k =0 the initial state probability vector is

1
p(0) =| 0
0
From (5.99)
Pz) = (1- ®z71)"1p(0)
fe o Loy - iy o —11‘“‘
1 2z z 82 1
i o ey DU D
5 22 1 2z 8z 0
B ik
3 0 62 1 22 3 LO_

Evaluating the inverse matrix by cofactors we have

P(z) = I—I_-_;zji %z‘l — ‘—1‘2‘2 1-2-1 +—‘l‘-z“2 %z‘l = %2—2 0
L lizz-l %z‘l—llzz‘z 1—z-1+11—2z-2_ 0
where the determinant
N-®z7l =1 - —f%z" + 1—722‘2 = %2‘3
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Hence,
I_l -zl4 %2'2
P1(z)
PG) = | Poe) [= ——p | 327~ 322
’ j-dzl | 2 4
P3(2) 1
12
12

As was mentioned earlier there exists for small systems a variety of ways in
which the above matrix can be evaluated. For discussion purposes we shall
employ the methods of long division and factoring. The method of long division
gives

1 +.5625271 + 4831272 + 4379273 + 4141274 + 4074275 + ..
P(z) =| 0+ .5z71 + 5381272 + 549223 + 554624 + 5574275 + ..
0+0+ 0833272 + 1302273 + 1548274 + 1676275 + ...
where the decimal values are rounded off at the fourth place. From (5.73) the

coefficients of z give the probability amplitudes p; (k) directly; thus we have
the discrete-time histories of the three components of p(k):

P1(0) = 1 py(0) = 0 p3(0) = 0
py(1) = 5628 py(1) = .5 p3(1) = 0
py(2) = 4831 py(2) = .5381 p3(2) = 0833
p(3) = 4379 p,(3) = 5492 p3(3) = .1302
p1(4) = 4141 py(4) = 5546 p3(4) = .1548
py(5) = 4074 py(5) = 5574 p3(5) = .1676

The above state probabilities as a function of discrete-time are shown graphically
in Fig. 5.5.

We observe that as k becomes larger the probability of the system remain-
ing in state 1 decreases sharply and approaches a probability level of 0.4. Knowl-
edge of the initial state (k =0) becomes less significant with time. The probabil-
ity at time k> 0 of the system being in a state other than state 1 is 0.6. In fact

{
1
|
4
{
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10
8 r—
6 f— Pyk)
B(k) =
Py (k)
4 -
2 Py(k)
1 / 1 1 1 ]
i 2 3 4 S 6 7 8
k
Figure 5.5

the system is in state 2 with probability greater than 0.5 and in state 3 with
probability 0.16. (The fact that the total probability exceeds unity is attributed
to rounding-off of decimal quantities in the calculations.)

As an alternative method for evaluating the matrix P(z) of our example
system we employ the method of partial fractions. The system determinant can
be factored as

7 1
£ ~1 = P | AR R S
f1-®z7Y =1 162 + 37 482

z73(z - 1)z ~ .522)(z - .0398)

thus

2  FREN A5

P@) = (z- 1)z - .522)(z - .0398) Falar
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The inverse of P(z) gives the components of the state probability p(k) as

A few typical values of the components of p(k) are

Prik) = (k=g * [410+ .2680(.522)F +.3166(.0398)¥], -

py(k) = 5494 - 0574(.522)F - 4874(.0398)% ]~

py(k) = [1819 - 3623(.522)% - .1809(.0398) ], 50

p(0) =1 p,(0) = 0 p3(0) = 0
py(1) = 5625 py(1) = .5 p3(1) =0
py(2) = 4835 py(2) = 5331 p3(2) = 0835
p(3) = 4481 py(3) = .5413 p3(3) = 1314
p(4) = 4299 py(4) = .5452 p3(4) = .1551
py(=) = 410 py(e°) = .5494 p3(°) = .1819

which compare favorably with the results achieved by the method of long
division.

Analysis by partial fractions provides for system insight not readily attain-
able through analysis by long division. We have seen by both methods that the
components of the state probability vector p(k) must not exceed unity. Since
Ipi(k) <1 for all i and k it follows from the method of partial fractions that
none of the eigenvalues of & can have a magnitude greater than unity. Thus all
roots of magnitude less than unity contribute transient terms which vanish as
k - 0. Since every Markov system must have at least one ergodic set it also
follows that every Markov system must have at least one root equal to unity. In
fact the characteristic equation

N-®zl =0

of a Markov system will have as many roots equal to unity as there are ergodic
sets in the system.
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5.7 TIME-VARYING CONTINUOUS-TIME SYSTEMS: TIME DOMAIN
ANALYSIS

For time-varying linear systems the differential equations to be solved are

x(t) = A(t)x(t) + B(t)u(r)
y(t) = C(&)x(r) + D(r)u(?)

The homogeneous form for the dynamical equation is

d—a;x(t) = A(D)X() (5.100)

We begin the solution to (5.100) by assuming that the components of x(t) are
linearly related to the components of x(¢). Using definition (3.35) this relation-
ship for zero input is

xi(0) = Zj:¢ii(t,to)xi(tg) (5.101)
wherein the initial conditions are established as

xi(tg) = 0 for i #j

xi(to) # 0

Thus (5.101) represents the solution for an arbitrary state by superposition of
the initial conditions. In matrix form (5.101) becomes

x(t) = ®(¢,t9)x(to) (5.102)

Returning to the dynamical equation (5.100), if it is of first order we can
write in scalar form

&
x

= a(t)dt (5.103)
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Integrating both sides of (5.103) from ¢ to ¢ gives

74
. f a(®)d
fo

x(tp)

t
x(tg) exp f a(E)dt (5.104)

to

x(1)

By (5.104) it is inferred that for first order systems the fundamental matrix is
t
p(t.t0) = exp f a(¥)dg (5.105)
to

This implies that for the initial conditions we let

x;(t) = ¢;;(t.0)x;(t0)
xi(tg) = 0 for i #j
xj(tg) = 1

Extending (5.105) to higher order systems we have

t
&(1,t0) = exp f A)dE (5.106)

o

Relation (5.106) is valid only if A(z) and the integral equation commute, i.e., if 4

t t
A(Y) f A)dE - f A@)A()dE = 0 (5.107)
to

. |

Clearly, for the case where A(?) is the product of a constant matrix and a scalar
time function, such as

A1) = f(ON
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where

t t
f AG)dE = A f fE)de

to o
then identity (5.107) holds. Thus, we let

t
B(1.t9) = exp| A f fE)d (5.108)

‘o

In general, however, it is not possible to obtain an analytic expression for the
fundamental matrix of a time-varying linear system. It is primarily of conceptual
interest.

To find the complete solution to the dynamical equation we again refer to
the method of variation of the parameter. Proceeding in a manner analogous to
that of the previous section the solution x(¢) is assumed to have the form

x(t) = ®(t,t0)f(t) (5.109)
where f(¢) is to be determined. The time derivative of (5.109) is
x(t) = d(t,10)f(t) + B(r.10)¥(7)

which, when substituted into (2.26), gives

[(t.t0) = AO)B(t,10)]H(r) + B(t,20)f(t) = B(r)u(r)

The expression in the bracket is the homogenous equation and is identically
zero, leaving
O(1.10)¥() = B(t)u(r) (5.110)

Multiplying both sides of (5.110) from the left by the inverse of (1) and
integrating we obtain the expression for f(¢):

t
f1) = f & (£.10) B u(®)dE
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Thus, solution (5.109) can be written as

t
f ®(t,10) 3™ ¢.10)BE)u(t)d

x(?)

to
(t.t9) j &1t 10) B u(E)dt

t
+ f ®(1,10)® ! (£.,10) B(E)u(¥)dE (5.111)
to

Evaluating the above equations at ¢ = fq results in

to
x(to) = f B(t.10) 0" .10 BE)u(E)dE

—00

fo
% J &1(5,10)B(E)u(E)dE

where, from (5.3), ®(g,t9) = I. Further, it can readily be shown that
71(E,70) = P(10.5)
Thus, solution (5.111) becomes

t
®(t,10)x(t0) + f B(1,10)B(t0.£) B(E)u(E)d

to

x(t)

t
B(t.10)x(10) + f B(1.£)BE)u(E)dE (5.112)

to

From (2.27) the input-output-state-relationship for the time-varying system is

t
(1) = C(!)\:‘i’(f«fo)x(fo) = fd’(f.E)B(E)u(‘é)dE] + D(tu(r) (5.113)

to
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5.8 TIME-VARYING DISCRETE TIME SYSTEMS: TIME DOMAIN
ANALYSIS

The normal form of the equations governing a linear time-varying discrete-time

system is
x(k +1) = A(k)x(k) + B(K)u(k) (5.114)
y(k) = C(k)x(k) + D(k)u(k) (5.115)
E < As shown before the solution to (5.114) can be found directly by recursion:
x(1) = A(0)x(0) + B(0)u(0)
] x(2) = A()x(1) + B(l)u(1)
% = A(1)A0)x(0) + A(1)B(0)u(0) + B(1)u(1)
........................................ (5.116)
For k > ¢ we define
k-1
ok,9 = IT AG) = Ak-1)AK=2)...AQ+ 1)A®) (5.117)
i=Q
and
D(k,k) = 1 (5.118)
Thus the equation of state for a non-stationary, discrete-time system can be
written as
k-1
x(k) = B(k.0)x(0) + Zb ®(k,2+1)B(Qu(®) (5.119)
Q=

Substituting (5.119) into {5.115) the output expression becomes
k-1

yik) = C(k)[¢(k,0)x(0) + - €I>(k,Q+l)B(Q)u(Q)j| + D(k)u(k) (5.120)

=0

For zero initial conditions the system output is

k-1
y(k) = 22 Cl)P(k. 2 +1)B(Qu(?) (5.121)
=0




102 AN INTRODUCTION TO THE THEORY OF LINEAR SYSTEMS

From our previous definition of the transfer function matrix H, where
y = Hu

the weighting sequence matrix H for non-stationary systems has the form, from
(5.121),

H(k,k~- ) = C(k)D(k,2+1)B(Q) (5.122)

From (5.117), fork>m > &,
k-1 k-1 m-1
IlaG) = ITanIT aw) (5.123)
=L i=m n=e

Thus, the expression for ® becomes

(k,Q) = Bk, m)P(m,Q) (5.124)

For k = 2 equation (5.124) gives
B(k,k) = Pk,m)P(m,Q) = |
For k < we define
®(k,0) = Al(K)AL(k+1)...A1@®-1) (5.125)

Provided the inverses of A(k) exist we conclude that

d(m,k).= & L(k.m) (5.126)
Hence, t};e weighting sequence matrix (5.122) can be written as the product

H(k,k-2) = H(k)H®) (5.127)
where

H(k) = C(k)®(k,0) (5.128)

H(?) = ®(0,2+1)B(R) (5.129)




6
Controllability, Observability
and Stability

6.1 NOTATION

In certain analytical problems involving the scalar product of two complex
vectors the order of the vectors in the scalar product is important. To highlight
this importance and track the ordered vector pairs we adopt the Dirac bra-ket
(or ¢19) vector notation. However, as the need arises for clarity or brevity we
will occasionally revert to the original notation.

In general for any two complex vectors x and y belonging to the same
vector space their scalar product may be such that

X'y £y x

or in Dirac notation

2

(x|y) # (ylx)

103
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Since the absolute value of the scalar product is independent of the order of the
factors we can write

(xly) = (y|x)*
(x|Ay) = Xx|y)
Axly) = N*(x|y) 6.1)

where A is a constant, not necessarily real, and the asterisk denotes the complex
conjugate.

Consider an nXn Hermitian operator A having distinct eigenvalues
A1,A2,-- A, Let the associated ket (or right) eigenvectors be lep),lez),....le).
The corresponding eigenequations can be written as

Ale;) = \lep) 1= 1;2,...n (6.2)

where each |e;) is defined by the normalized basis vectors (l¢;,2%;....,"¢;), i.e.,
l2;) = (le;,2e;,..., ;) (6.3)

It can be shown that the eigenvectors |ey),le3),...,|e,) are linearly independent
and therefore, also form a basis for the n-dimensional space. Hence any vector in
the space spanned by le;) (i = 1,2,...,n) can be written in terms of the eigen-
vectors. For the right vector [x) we can therefore write

n
Ix) = ,lei le;) (64)
=

The respective bra or reciprocal basis vectors corresponding to those of
(6.3) are (eql,(ez|,....(e,|. Together the two sets of basis vectors satisfy the
orthonormality relation

(ejlej) = & (6.5)

For any two specific vectors |e;) and (e;| the term

le,-)(eii
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is called a dyad. Provided they have been normalized to satisfy condition (6.5)
the sum of the dyads is the identity matrix, i.e.,

; :
Zl lej)e;l = 1 (6.6)
<

which is the closure relation.
Corresponding to the right vector (6.4) we can write for the left vector

n
(x| = Zl x; (el 6.7) 1
&

Using identity (6.6) equations (6.4) and (6.7) can respectively be written as

n

Ix) = le le; Y e;1x) (6.8)
l=
n

x| = Zl(xlei)(eil (6.9)
=

The scalar product of any eigenvector (e;| and [x) becomes

i

n
(ej|x) .Z‘.l(eile,-)x,- (6.10)
i=

= X;

Essentially, the dyads of (6.6) are n X n matrices with diagonal elements
ag;be;. Each term in the sum is a projection. Therefore, the eigenvalue problem
as formulated by (6.2) can be stated as one whereby for a given Hermitian
matrix operator A the associated n-dimensional vector space is decomposed into
a complete set of orthonormal vectors such that Ais a linear combination of the
projections (dyads). This is clearly seen by expanding (6.2), i.e., multiplying
both sides from the right by (e;| and summing:

Ale;) = Njlep)

n
A_Z:1 le; eyl = Z‘.l A, le)<el
i= i=

sa -
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n
A= Zi Ale) el (6.11)
=

Since any matrix operator A can be written as its identity
A = 1A (6.12)

it is apparent from (6.6) that matrix operators can be expanded in terms of their
respective eigenvectors. Thus the following identities are possible:

n n
A= A_lee,-)(e,-l = Ll (6.13)
i= i=
n
Al = Z%le,-)(e,-l (6.14)
=1 N
Ix) = Zl le;Xe;1x) (6.15)
<
n
(s1-A) = Zl(s- ;) le;Xe;l (6.16)
l=
= -1 = l 4 4
(s1- A) .Z=:1 o e 6.17)
n
M= 'Zzle}"'tle,-)(e,-l (6.18)
ra
n
f(A) = ,Z_l FO0)leel (6.19)

6.2 SPECTRAL DECOMPOSITION

The state equations in standard form were shown to be

[x) = Alx) + Bju)

ly) = C|x) + Dlu)
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Their respective time-dependent solutions are

t
o(1) | Ix(0)) + fe‘“anu(snds (6.20)
0

[x)

t
ly) = Cd(r)] Ix(0)) + f e AtBlu(t))dE | + Dlu(r) (6.21)

0

By applying identities (6.15) and (6.18) to solutions (6.20) and (6.21) we obtain
the following spectral decompositions:!

n n t
Ix) = _Zle“"’l-.-><enx(0)> V.'l f MY 0,38t o lu(E))at 6.22)
£
0

n n t
ly) = Zle*"cu,-x.,nx(o» + Z: f MU cle ) (Ble lu(E)dt + D@ (6.23)
i= =
0

where B is the conjugate transpose of B. The scalar product
(ejiBu(®)) = (Ble;lu(t)

applies.

From (6.22) and (6.23) two observations are readily apparent: (1) the
vectors (BTeiI may be regarded as “weights”” which determine the magnitude of
the effect of the input on the change in state in the |e;) “direction,” and (2) the
vector-valued, time-dependent quantities ei’le;) can be interpreted as the
system modes.

6.3 CONTROLLABILITY

The system theoretic concept of controllability arises from the following two-
point boundary valve problem. Given an initial state |x(0)) at time zero and a
final state [x) # |x(0)), determine whether it is possible to find a time ¢ and an
input |u) which take the system from its initial state at time zero to its final

1. Notationally x = |x).
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state at time ¢, where ¢ is finite. To formalize the definition of controllability we
establish for the system representation

{x) = Alx) + Blu)

ly) = C|x) + Dlu) (6.24)

and stipulate that at some initial time zero the system is in an allowable initial
state [x(0)). The system representation (6.24) is defined! to be completely
controllable if there exists a finite time t > 0 and a real input |u) defined on the
time interval (0,t) such that

t
Ix) = eAf[|x(0)) + f e ALB|u(f))dE
0

The necessary and sufficient conditions under which the system represen-
tation is controllable are readily deducible from (6.22), the spectral decomposi-
tion of the state. These conditions are presented below (without proof) in the
form of the following theorems:2

Theorem 6.1. Let the matrix A in (6.24) have distinct eigenvalues. Representa-
tion (6.24) is completely controllable if and only if for all n vectors of (6.22) the
condition

@Bl £0  (=1,2,...n) (6.25)

is satisfied. (Be;| =0 for any i implies that the mode e; cannot be excited. Hence
the representation cannot be completely controlled.

Theorem 6.2. Let A and B in (6.24) be n X n and n X m matrices, respectively.
Representation (6.24) is completely controllable if and only if the rows of the
matrix

e At

are linearly independent on the time interval (0, t).

1. See Zadeh and Polak, System Theory, p. 244, McGraw-Hill, New York, 1969.
2. op. cit.

i
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Theorem 6.3. Let A and B in (6.24) be n X n and n X m matrices, respectively.
Representation (6.24) is completely controllable if and only if the n X nm con-
trollability matrix Q., where

Q. = [B AB AZB ... A"-lg] (6.26)

has rank n.

As a test of the above conditions consider the simple system of Fig. 6.1.
We desire to establish the controllability of the system representation. By inspec-
tion we have the simultaneous equations

Xy =xp +4x; tu

Xy = 5x9 tu

: Yy =x1 - X2

which can be written in matrix form as

RN R

1 -l]l:x1]+u

X2J

b
]

Thus the system matrices are identified as

A'14 B‘1 C-= = [1
5| S = =@t -1 b=

Figure 6.1

i
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From (6.26) the controllability matrix Q. is the 2 X 2 matrix
Q = | | R
= [B AB| =
1 5

Clearly, the columns B and AB of Q, are linearly dependent. Therefore Q. does
not have rank n (=2). Hence, the system representation for the above example is
not completely controllable. However, with a slight modification to A (i.e.,
changing the amplification of state component x3), such that

ael ]

the columns of Q. become linearly independent. As a result the system represen-
tation for the above example is now completely controllable. We have

1 6
Q =
it - OF

6.4 OBSERVABILITY

Changes in system state as discussed above are not directly observable. Usually
what is observed is the input [u) and its detectable effect on the system output
ly). This physical realization leads to the following definition of observability.
We establish the system representation as (6.24). Let the system be in an allow-
able initial state |x(0)) at time zero. And let the input at time zero be |u) =0.
The system representation (6.24) is defined! to be completely observable if for
every initial state at time zero there exists a finite time t such that knowledge of
the output |y) over the time interval (0,t) is sufficient to determine the initial
state |x(C)).

A set of necessary and sufficient conditions under which the system
representation (6.24) is observable is seen from (6.23), the output spectral
decomposition. These conditions are presented below (without proof) in the
form of the following theorems:2

1. op. cit.

2. op. cit.
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Theorem 6.4. Let the matrix A in (6.24) have distinct eigenvalues. Representa-
tion (6.24) is completely observable if and only if for the n vectors of (6.23) the
condition

Cle)) # 0 (6.27)

is satisfied. Obviously, if Cle;)=0 for some i, then initial states of the form
[x(0)) = ale;» would give zero outputs for zero input and these states would be
indistinguishable from the zero-state (x)=0. (Note that in concert with (6.25)
the system representation is completely controllable if and only if every mode of
its dual representation is observable.)

Theorem 6.5. Let the matrices A, B, C and D in (6.24) be, respectively, n X n,
nXm, kXn and k X m. Representation (6.24) is completely observable if and
only if the observability matrix Qg, where

Q] = [ctafct...am et (6.28)
has rank n. (The dagger denotes the conjugate transpose.)
As a test of the above criteria we return to the simple system of Fig. 6.1.
The matrix C is

¢=1{ =y

By (6.28) the observability matrix Qg is

T
QO =
Ik =1
Clearly the columns of Qg are linearly dependent and the rank of Qg is less than
n (=2). Hence the representation for the system of Fig. 6.1 is not completely

observable. However, with a slight modification of C (i.e., changing the amplifi-
cation of the output x,) such that

the columns of Qq are made linearly independent and the system representation
is made completely observable.

]
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6.5 STABILITY-UNFORCED SYSTEM

The system theoretic concepts of controllability and observability are direct
results of the spectral decomposition of the state and output vectors. Both
concepts appeal to our intuition. A third concept, somewhat related to the other
two and also fundamental to the qualitative analysis of dynamical systems, is the
concept of system szability. In defining stability we refer to the system state and
its behavior with time. By definition an equilibrium state is one whereby

Ix) = 0

[x) = 0

From Newton’s laws of motion an unforced system that is initially in an equilib-
rium state will remain in that state indefinitely unless acted upon by an external
force, after which time one of several mutually exclusive things can happen.
Consider the external force to be an impuise. Then, (1) the system can be
displaced from equilibrium and, by internal properties, returned to equilibrium
within a small time interval. In this case the state is said to be stable. (2) The
state can be displaced a finite “distance” from equilibrium and remain at the
displaced position for all time. In this case the state is said to be unstable but
bounded. Or (3) the state vector can grow indefinitely with time in which case
the state is both unstable and unbounded.

The bounded aspects of system or state stability can be refined mathe-
matically by introducing the idea of a neighborhood surrounding an equilibrium
state. What is intended by a neighborhood in this instance is a finite, fixed,
arbitrarily small displacement € in the 7 time plane which surrounds the end-
point of the equilibrium state vector x. (Fig. 6.2). We assume that the system
output is the state and that the equilibrium state in question is the zero-state
Ix) =8 =0. Accordingly, we define the concept of stability of the zero-state or
zero-input stability. Roughly, the zero-state |x)=0 is stable if for every initial

e

)

ty plane

8

Figure 6.2 Neighborhood surrounding an equilibrium state.
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state |x(0)) sufficiently close to zero the corresponding free motion x(to.x(0),1)
remains close to zero for all t>tq (Fig. 6.3). More precisely, we define the
zero-state |x)=0 to be stable in the sense of Lyapunov if for any tq and any
€ > 0 there exists a & > 0, dependent on € and t(, such that

Ix(0)) <& = |x| < € (6.29)

Condition (6.29) implies that the free motion trajectory x(to,x(0),f) remains in
the cylinder of radius € for all time.

Additionally, we require that the system response eventually go to zero.
Our above definition of stability in the sense of Lyapunov does not cover this
requirement. Therefore, we define the stability of the zero-state |x)=0 to be
asymptotically stable if (a) it is stable in the sense of Lyapunov, and (b) for any
to 1x(0)) is sufficiently close to O such that the free motion trajectory
x(tg,x(0),t) > 0as t > oo,

We have seen previously that for the unforced system the solution to the
dynarmic state equation is

[x) = ®(t)Ix(0))

ik (6.30)

(1)

Thus it is possible to represent the state at a time subsequent to fo by a linear
transformation (involving the fundamental matrix ®) of the initial state. There-
fore, for such systems it should be possible to determine the conditions for
stability which depend only on ®. Accordingly, in support of the definitions of
zero-state stability the following theorems! apply:

ey

ty plane

x(0)

Figure 6.3 Zero-state .\itability.2

1. The above theorems are presented without proof. For a demonstration of their respective
proofs see, for example, Zadeh and Desoer. Linear Systems Theory, pp. 379-391, pp.
498-503, McGraw-Hill. New York, 1963.

2. Notationally |x) = x and the two notations will be used interchangeably where brevity is

required.

e ——
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Theorem 6.6. The system is stable in the sense of Lyapunov implies (and is
implied by ) there exists a finite constant K which may depend on t( such that

|D(r.t0)l < K (forall £ = tg) (6.31)

Theorem 6.7. The system is asymptotically stable if

(a) Ib(r.t0)l < K (forall ¢ = tg)
and (b) lim [®(t.t9)| = 0 (for all #) (6.32)
I -»00

Theorem 6.8. The system is stable in the sense of Lyapunov implies (and is
implied by )

(a) All the eigenvalues of the constant matrix A have non-real parts, and

(b) those eigenvalues of A that lie on the imaginary axis are simple zeros of
the minimum polynomial of A.

Theorem 6.9. The system is asymptotically stable if and only if all the eigen-
values of A have negative real parts.

By theorems 6.7 and 6.9 above we assert that for fixed systems described
by (6.30) asymptotic stability implies that

Ix(¢9,x(0),)] > 0
in an exponential manner. We therefore specify that
Ix(tg,x(0),1)| < Ce™ (6.33)

where Cis a constant and A is a positive number.

We can be more specific regarding the above definitions and theorems
through a simple example. Let the matrix operator A for the unforced system
governed by (6.30) have distinct eigenvalues Ay, Az, ..., N,, where each eigen-
value has the complex form

i Ap =01 tjwy
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The real parts of each eigenvalue can be ordered as 0y >0y > . . > 0,. From
equation (5.46) the state transition matrix ¢ can be written as

Ir—l
]

- 1)

n o
@ = 2N Z.lA
r=

i=1

where the A,; are matrix coefficients of the polynomial expansion and my, is the
root multiplicity or degeneracy of the eigenvalues. For the unforced system we
consider three situations: (1) 0; <0, (2) 0; >0, and (3) 0; = 0. In each case we
refer to equation (5.46).

Case (1): 0; < 0.
We see that for ¢ =t the absolute value of ® remains finite. The condi-
tion of Theorem 6.6 is satisfied. Further,

lim ®(z,2) = 0
{00

thereby also satisfying the conditions ot Theorem 6.7. It necessarily follows that
Theorem 6.8 and 6.9 are also satisfied. Clearly then for the case where the
eigenvalues have negative real parts the state vector [x) = 0 as ¢ = %. The system
representation is asymptotically stable.

Case (2): g; > 0.
The time limiting value of the transition matrix ® in this case is

lim ®(r,7) = =

t—oo

Therefore the state vector [x)—>° as t—><°. Hence, for the case where the
system eigenvalues have positive real parts the system representation is unstable.

Case (3): 0; = 0.
When the system eigenvalues are purely imaginary two situaticns arise:
(a) The system has simple roots, in which case the A,; are constant matrices
and ® remains finite. Thus in accordance with Theorem 6.6 the system
representation is stable.

(b) The system has multiple roots, in which case the A,; are polynomials in ¢
with matrix coefficients. Clearly

lim d(rq.t) = o
t—>o

Hence, the system representation is unstable.
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6.6 STABILITY-FORCED SYSTEM

Recalling the state dynamical equation and its solution we have for the forced
system

Ix) = Alx) + Blu)

i
" uouw»+f¢mmuwa
0

For discussion purposes we specify that the system is initially at rest. Let the
initial state at time zero be the zero-state, i.e., [x(0)) =0, after which time the
system is perturbed by an impulse. We examine the system response as it relates
to the concept of stability. For this situation the solution to the dynamical
equation becomes

t
[x) = f ®(t - £)Blu(¥))dE
0

t

=fmmwg (6.34)
0

where
G =9r-%8B (6.35)
The elements of the matrix G are of the form
n

g,-/- = kzz:lap,-k bk] (636)

Since the vector |u) is a column matrix the relationship between the elements of
the integrand and the state vector is established as

x; = g:g,-,-ul-

= /Z;¢,kbk,u, (i=1.2,...n) (6.37)
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Expressing the elemental input as an impulse

up = 8(t-%)
0 fori #;

Ui
the components of the state vector become
X =gif (i=l.2,...,n)
Thus G can be interpreted as the matrix of impulse responses of the state. For
such a system we define stability as follows: A forced system is stable relative to
a set of bounded inputs if and only if the state is bounded for all inputs |u)(t) in
the set for all t > t(. Accordingly we require that

x(t)| < K < e (6.38)

where K is a finite constani. In support of the above definition the stability
criterion for a forced system is established by the following theorem:!

Theorem 6.10. A forced system is stable with respect to a set of bounded inputs
if and only if
t
f lgjldE < Kj; < (6.39)
to
for every tg and all £ > tg.

We illustrate through a simple example the concept of stability as it applies
to a forced system. Consider the representation of the system in Fig. 6.2. The

system matrices are
1 4
0 5

it =1 D = [1]

>
I

o]

I
o,
[EC—
(=R

(2]
[}

1. op. cit. 1
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The state transition matrix is

Ar)?
e‘“=|+A:+(—2,)—+...

1 0 ! 1 24]p2
+ t + ——""
0 1 0 S 0 252

We desire to examine in closed form the time dependency of the fundamental
matrix. This can readily be accomplished for simple systems by converting to the
frequency domain then back to the time domain. Thus

®

L{®@n)} = [s1- A]!
_—s-l -4 |1
Lo s-s
Hissme’ i
_ el s-1)s-5)
1
L (-5

Converting back to the time domain the fundamental matrix becomes

et e5t- et
= 0 St

Hence the product G = ®B is
&St |
e P

It is readily apparent that for the system of Fig. 6.1 the positive nature of the
elements of ® and B will cause all the non-zero terms to grow beyond bounds as
t becomes infinite. Therefore, the system representation for the example chosen,
under both forced and unforced conditions, is unstable. This conclusion should
be no surprise. Earlier it was shown that the representation for the system of
Fig. 6.1 was not completely controllable and not completely observable. How-
ever, with slight modifications we were able to render the representation as
completely controllable and completely observable. We now logically inquire as

|

- ——




CONTROLLABILITY, OBSERVABILITY AND STABILITY 19

to whether or not similar modifications can be made in the case of system
stability —under forced and unforced conditions.

In the case of the unforced system the conditions for stability are manifest
in equations (6.31) through (6.33). Equations (6.38) and (6.39) represent the
conditions for stability of the forced system. All of these conditions can be
satisfied in a variety of ways; the objective being to maintain a finite state vector
for bounded inputs for all > ¢y. An unstable representation of an unforced
system does not necessarily mean an unstable representation of that same system
when an input is applied. The terms giving rise to the instability may not be
excited by the input. Nor does it necessarily follow that when the conditions for
stability are met then the system is completely observable and/or completely
controllable. Similarly, a stable representation of an unforced system does not
necessarily imply a stable representation of the forced system. We demonstrate
these important facts through a simple example. Referring to the system of Fig.
6.1, we render the system stable by changing the representation to that shown in
Fig. 6.4. Essentially, the changes are in the magnitudes of signal amplification.
The modified system matrices become!

L
=2

[1 1]
B
g =1
(1]

1 D

A

(o

The corresponding state transition matrix ® and impulse response matrix G are,
respectively,

et _;.(et o e—-t)

Figure 6.4 System wherein the input does not excite the unstable mode.

1. After Schwarz and Friedland, Linear Systems, p. 381, McGraw-Hill, New York, 1965.
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Due to the positive nature of the elements ¢, and p,, we have

lim [®| = oo

t—>o0

Thus, the representation for the system of Fig. 6.4 is unstable when no input is
applied. On the other hand the impulse response contains the diminishing terms
e~!in both elements g, and g,. Therefore the integrals

oo

f lggldt  and f lgyldE
to

to

both remain finite for all finite # = #g. Consequently, the representation of the
system of Fig. 6.4 is stable when an input is applied. This apparent paradox is
resolved when one examines the controllability and observability matrices for
the system, under both forced and unforced conditions:

Unforced system Forced system
u=20
B =0 5. =[ 1 -1]
Q =0 =2 2
{[ S _pE
S [1 0] 0 [1 0]

Conclusions:

stable
not completely controllable
completely observable

1. unstable
2. not completely controllable
3. completely observable

W N =

Thus, to resolve the above paradox it is concluded that the system input does
not excite the unstable mode. Both modes, however, are observable. The un-
stable mode is observed when no input is applied. The stable mode is observed
when the input is applied.

6.7 COMMENT

The central idea of the past discussion has been system representation in state-
space. The algebra of rational functions (polynomials), linear vector spaces, and
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the methods of Fourier and Laplace transforms were the principal analytical
tools. It was assumed that knowledge of the system matrix operators and vari-
ables was complete. However, it must be recognized that for large systems this
assumption is short-lived. For large systems complete identification of all the
variables and their operator elements is not practical, and therein lies the prob-
lem of applying the linear theory to practical problems dealing with systems of
significant size. Consequently, a deterministic analysis for such systems gives
way to the more realizable probabilistic or statistical analysis. Accordingly, the
reader is referred to the methods of Markov chains, diakoptics, sparse matrices,
fuzzy sets, statistical mechanics, etc., which bear on this problem.




7
Statistical Systems-Signals
in Noise

7.1 INTRODUCTION

It is important to recognize the practical limitations of the theory developed this
far. Certainly, a deterministic analysis is possible for simple differential systems,
where all the descriptors satisfying the input-output-state relations are known.
However, for large complex systems all the state variables, the elements of the
fundamental matrix, etc., are not known nor can they even be defined in some
cases. The theory addresses a small part of the real (nonlinear) world. Conse-
quently, a deterministic analysis of many real systems is either not a simple task
or not feasible using the linear theory developed thus far.

As a method for augmenting the theory we turn to statistical or proba-
bilistic analysis. The input-output relations are treated as random processes. We
will look at the statistical properties of each process, where the relations be-
tween these properties will form the basis of the analysis. The most important of
these are the mean value and correlation function. Our attention will specifically
focus on the filtering problem and stochastic processes, i.e., on signals u(t) that

122
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are described by their averages rather than signals u(¢) that are described by their
point properties. Appendix F contains a short summary of some of the proba-
bilistic expressions which will be used in the sequel.

7.2 AVERAGES (MEAN VALUE) AND CORRELATION FUNCTION

As a prelude to the discussion to follow we consider two different ways to
represent an average. They are the time average and ensemble average . Both lead
to the same results. The time average (u(¢)) of the signal u(z) is defined as

T

(u(r)) = lim ’,17 u(t)dt (7.1)
P ol J o

where T is the time interval (-¢,#). This limit is a number associated with the
functional u(z). On the other hand the average of a random signal is interpreted
differently. Assume that the set {u(¢)} is a stochastic process as defined in
Appendix F. For a given time ¢, the sample function u(z) is a random process
resulting in the random variable {. The expected value of the random variable
will be denoted as E{u(t)}; it is the ensemble average of the random process
{u(t)}. We have

E{un)} = E{u(,0)} (7.2)
= u(r) (7.3)
= J af(a;t)dt (7.4)

where f(a;t) is the probability density function associated with the value a of
the random variable, and f(a;t)da is the probability that @ will be found in
a t da. In conjunction with the above it follows that

j f(a.t)da = 1 (7.5)

In general (u(¢)) and E{u(r)} are unrelated. (u(r)) is a constant, whereas
E{u(t)} depends on t. However. if the process is stationary (see Appendix F)
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and satisfies certain ergodic conditions, then the time average (u(r)) performed
on each member of the set is almost certainly a constant equal to £{u()}, i.e.,

Cu(e)) = E{u(n)} (7.6)
The correlation function R(£) for the process u(t) is defined by (F.8) as
R(E) = u(t- §)u(r) (1.7)

It is assumed that u(¢) is a stationary stochastic process where u(r) = 0. Expres-
sion (7.7) characterizes the statistical relationship between the values of u(r) at
times ¢ and - &, where £ can be positive or negative. It is tacitly implied that as
£ increases the statistical coupling between u(¢) and u(t - £) becomes weaker.

Since u(t) is stationary the mean values u(7), u2(z), u(t-§&)u(r), etc., are
independent of ¢ and depend only on £. Therefore,

u(t=Hu(r) = u-5)u) = u)u(®) (7.8)
or

R(E) = R(-§) (7.9)

For two processes, say u(r) and y(¢), the cross correlation function Ryy(®)
is defined as

Ru_v(z) =u()y(-¥§) (7.10)
Expression (7.10) is unlike (7.7) in the sense that it is not an even function:
Ryy(E) = Ryu(-%) (7.11)

where
Ryu(-8) = y(Hu(t-%) = p(t- Hu(r) (7.12)

In a manner similar to defining the average or mean value two different
ways we examine the time average alternative to (7.7). The process u(¢) is said to
be ergodic if all its statistics can be determined from a single sample function of
u(t). Consequently, for ergodic processes the (time average) correlation function
R(%) is defined as, (see (F.17)),

t

RE) = lim == | w(t-Bu(at (7.13)
T—o0 ..T i
- g - e 7 A

ol s - b
el T ) A o o S L o I
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R() = E{u(t- Hu(n)} (7.14)

u(t- £)u(r) (7.15)

7.3 FILTERING PROBLEM

The problem of filtering can be stated as follows: Let the time dependent input,
applied at the system (filter) input terminal, be represented as the random
process u(t) (see Figure 7.1). It is the sum of a useful signal s(¢) and noise n(t),
both of which are random processes:

u(t) = s(t) + n(r) (7.16)

The system H operates on the input resulting in the output y(r). We have

Hlu(1)]

H[s(t) + n(1)] (7.17)

Q)

The problem is to choose H such that it reproduces some meaningful function,
say m(t). with least possible error. The function m(¢) is the transformed version
of the signal s(¢):

m(t) = H[s(1)] (7.18)
In simple filtering A is the unit operator 1, in which case (7.18) reduces to

n(t) = s(t) (7.19)

The instantaneous error of reproduction ¢(¢) is the difference

€(t) = y(@) - m(t) (7.20)
= H[s() +n(0)] - m(r) (7.21)
H .
u(r) y(1) = Hlu(n)]

Figure 7.1
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Clearly, €(¢) is also a random process. The intensity of the fluctuations in the
process is characterized by their mean square value

E{eXn)} = €X1) (7.22)

In the absence of noise, where n(r) = 0, our interest will be in predicting
the value of s(z) after a time interval &:

m(r) = H(s(t +§)] (7.23)

The prediction is made by considering past behavior of s(¢) and exploiting the
statistical properties of the random process.

The discussion to follow will focus exclusively on linear filters. For such
filters the input-output relations can be written as

() = Hlu@)]
- J n(Eyu(e - £)d (7.24)
= f h(t - §)u(®)dt (7.25)

—00

where A(t) is the weighting function or impulse response of H. Filters charac-
terized by either (7.24) or (7.25) are time invariant or stationary filters. The
analysis will be noise suppression by linear filtering. Specifically, the filter will
be the type where u(t) is stored for a time & then processed. It appears at the
output as (¢). (Such systems resemble computers which store input data,
process it, then deliver the processed data to an output terminal.) To form y(z)
the values u(¥) for all £ are used. We seek the best system, characterized by H,
where €2 is a minimum.

As a matter of convenience we will use # to mean u and similarly for all
other quantities of the process. Where clarification is required the context will so
state.

7.4 OPTIMUM LINEAR FILTER

The accuracy with which the useful signal is reproduced is determined by the
mean square error €2, where € is defined by (7.20). The filter // which minimizes

o
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the mean square error, wherein the output reproduces the meaningful m(¢), is

called an optimum filter. To determine / we first establish from (7.24) the
input-output relationship for the optimum filter:

») = f h(€)u(t - £)dE
The corresponding error function is, from (7.20),
e(t) = J h(E)u(t - £)de - m(t) (7.26)

—00

Squaring (7.26) gives

1}

= 2 oo
et [f h(é)u(f"’;’)di} = 27"(1)) h(E)u(t - £)dg + m(1)

oo

J f h(E)h(EYu(t - E)ulr - £)dédE'

-2 f hEm(Du(r - §)ds + m(r) (7.27) _1

—o0

where the square of the first term on the right-hand side was transformed into a
double integral. Forming the mean of (7.27) we have

() = U hEE Ut~ Eu(r - £)dedg

oo

- 2f h(E)ymyult - £)de + m2(r) (7.28)

—o0

From definitions (7.7) and (7.10) we introduce the autocorrelation function
R,,(£) and the cross-correlation function R, (§). where

R“(E) = u(t)u(t— E) (729)

2 . v : - A
o' »-'\hl..‘n:‘-.

-

-t;’:.qﬁ---w Bt oA
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Ry(£-£) = ut-&u(-§) (7.30)
Ry () = m(t)u(t - §) (7.31)

We note that the autocorrelation function
Ryu(§) = m(tym(t - £) (7.32)
for £ = 0 reduces to
Ry(0) = m2(z) (7.33)

Thus, the mean square error for the optimum filter can be written as

e = ff h(E)R(E )R (& - £')dEdE" - 2 f h(E)Rp(E)dE + Rp(0)  (7.34)

—o0

Equation (7.34) clearly shows the dependency of the mean square error on the
impulse response functions and the correlation functions. It can be shown that
€2 has its minimum value if and only if the impulse response 4(r) is a solution to
the equation

f R(EVRE - E)dE = Rypyu(®) (7.35)

—%0

Thus, it now remains to solve (7.35) for h(£).

The solution to (7.35) will be more convenient with the following defini-
tions. Given the correlation function R(§) we introduce its Fourier transform
S(w). where

1}

S(w) = F{RE}

~ oo

J e TWER(E)dE (7.36)

—o0

Inverting (7.36) gives

RE) = —;;f el “tS(w)dw (7.37)
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The function S(w) is the power spectral density, the meaning of which will
become clearer later. Similarly, we introduce the transform of the impulse re-
sponse h(t):

H(w) = ${hE)}
= J- me‘j“’zh(i)ds (7.38)
Its inverse is
h(t) = #J‘“ej“’tll(w)dw (7.39)

The function H(w) is called the system transfer function. We can now begin to
solve (7.35) for h(w). :

Multiplying both sides of (7.32) by e~/ and integrating with respect to &
gives

—oo

f eTkdg j h(ERu(E - E)aE' = f TRy (E)dE (7.40)

Letting the variable & - £'= ¢ the left-hand side of (7.40) becomes

f ertds [ RE - E)dE = f eTE nE )t f TR (0)dt

—o00 o

= H(w)Su(w)

whereas the right-hand side is equal to Sp,(w). Equation (7.40) therefore
becomes

H(w)Sy(w) = Spu(w)
Thus, the transfer function of the optimum filter is simply

Smu(w)
Su(w)

H(w) = (7.41)

i.e..it is the ratio of the spectral densities Sy, (w) and S, (w).
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Substituting equation (7.35) into (7.34) the mean square error for the
optimum filter becomes

€2 = Ry(0) - ff hE)hEIR (& - £)dtdE’ (7.42)
In view of transforms (7.36) through (7.39) we can write

Rn©) = 3 [ Smierte

ff hEV(E )R (& - £)dEdE’ ﬁ f Su(w)dw

. f e/t n(g)dt f e R Vat’

= %f Su(Ww)H(- w)H(w)dw
from which it follows that (7.42) can be written as
€ = Z—Lf [Sp(@) = Splw)H(-w)H(w)] dw

Using relationship (7.41) the mean square error becomes

l

=, 1 J.w Sm(W)Si(w) = Spu(@)Smul-w) g (7.43)

2m Su(w)

—o0

where

S(w) = S(-w)
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We now apply the formulation to the problem of simple filtering where
m(t) = s(¢)
H =1

We assume, for simplicity, there is no cross-correlation between the useful signal
and noise, i.e.,

Ron€) = s(n(c-%) = 0

The correlation functions Ry, and R, can be written as

Rsu(®) = s(u(t-£) = s(t)s(t - £) + s()n(t~§) = Ry(¥)

Ry(®) = [s() +n(0)] [s(z-&) +n(t-§)] = Ry(®) + R,()
Consequently,
Ssu(w) = Sg(w)
Su(w) = Ss(w) + Sy(w)

and, from (7.41), the transfer function H(w) is

H) = ) (7.44)
Ss(w) + Sp(w) y
The corresponding mean square error becomes, by equation (7.43),
5 _ 1 [T _Si(w)Sp(w)
2o o L el (o (B
€ 21,] 5:(@) * Sy(@) dw (7.45)

~o00

In the case where the spectral densities Ss and S, do not overlap (Fig.
7.2a) we have, from equation (7.44),

Hw) = 1, Ss(w) # 0
Hw) = 0, Ss(w) = 0

From formula (7.45)
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Sp(w) Sp(w)

Figure 7.2 Filtering of random processes.

Hence, simple filtering, where the useful signal and the noise do not occupy the
same frequency band, takes place without error. However, if Ss and S, overlap
(Fig. 7.2b) then error accompanies the filtering. The error is, in part, due to the
noise in the frequency range w) <w < w; passing through the filter, and, in
part, due to the distortion of the signal resulting from attenuation in the fre-
quency range w; <w <wj. As S, gets larger and S, gets smaller in the range
wi <w<wj the less this range will be allowed to pass through the optimum
filter.
We next examine the interesting case where

Sp(w) > Sg(w)

The spectral density of the noise is much larger than that of the useful signal. In
this case the transfer function is approximated, from equation (7.44), as

Ss(w)

W) =

<1

The corresponding mean square error is, from (7.45),

L
€ = = f Ss(w)dw = R(0)

—o0

st)

Thus, when the intensity of the input noise is much greater than the useful signal
and occupies the same frequency range then the mean square error at the output
of the optimum filter is equal to the mean square of the useful signal. This is to
say that when the input noise is intense the intensity of )(¢) at the output is
weak. In fact, we have, approximately,

»@®) =0
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e(t) = s(t)

since the magnitude of H is much less than unity.

7.5 SPECTRAL DENSITY OF SIGNAL AND NOISE
We assumed in the simple example of Section 7.4 that Rgy(£) = 0. However, in
practice Rgy,(£)# 0 and, therefore, Sgy(w) is finite. Accordingly, one can ask
what is the physical significance of Sgn(w)? From (7.36) the spectral density
Sgn(w) corresponding to the cross-correlation function Rgn(§) is
Ssn(w) = SpsC-w) (7.46)
Sgn(-w) = Sen(w) (7.47)

For the process u(t) we can write

Ry (&) = [s(ey+ n(0)} [s(e - &) +n(t - £)]
= Ry(§) + Rp(§) + Ron(€) + Rps(®)
Therefore
Su(E) = Ss(w) + Sp(w) + Ssu(w) + Sps(w)

Sg(w) + Sp(w) + 2Re[Ssn(w)]

Thus, the spectral density of the input process consists of that which is signal,
that which is noise. and an added real part 2Re[Sgn(w)] called the interference
intensity caused by the statistical coupling between s(f) and n(t). The imaginary
part of Sg,(w), which identifies the phase of the statistical relationship between
s(¢) and n(t), has no explicit physical meaning.

7.6 POWER SPECTRAL DENSITY AND CORRELATION FUNCTION
Consider the stationary stochastic process of Appendix F. Let the process be

ergodic where the sample function u(f) contains all the characteristics of the
process. For real u(t) with Fourier transform U(w) the energy E of u(t) is

E = J- ul(t)dt = 3‘;] [U(w)dw (7.48)

—o0
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The quantity |U(w)I? is the energy density spectrum whereas u?(t) is the instan-
taneous power associated with u(t). The average power P of u{t) is

T
Py =P = lim —= | u¥(p)dr (7.49)
T—>o0 2T T

It is possible from (7.48) and (7.49) that the energy of u(¢) can be infinite and
the average power finite. If the energy of u(¢) is not finite it may not have a
Fourier transform. Therefore it is convenient to define the truncated signal
ur(t):

A _{u(r) i <T
O =1 6 >T

The corresponding Fourier transform Up(w) is

0 T
Ur(w) = f ur(f)e™tdr = f u(t)e7tar (7.50)
—oo -T

Thus, as T - o the truncated sample function uz(f) approaches u(t). The aver-
age power Pr of u(t) over the interval (- 7,T) may now be written as

T oo
(Pp) = Pp = ‘2-1; f u(t)de = 51; ud(t)de
=T oo

2% _[ |U(w) 22T dw (7.51)

The quantity |U(w)I2/2T is the power spectral density of u(z) in the interval
1T}

In dealing with a random process that is not ergodic, we may associate
with each sample function u(f) a truncated sample function uz(t), its Fourier
transform Uz(w) and its spectral density. The power spectral density W(w) of
the random process is defined as

W(w) = E{IUr(w)?/2T}

Jr—"
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e )
= Tll_{T:o 2TlU(W)I

ol
Jim 57 U@ U @) (7.52)

i.e., it is the limit of the ensemble average of the power spectral densities of all
of its truncated sample functions. Accordingly Ur(w) is a random variable.

Equation (7.52) is not in convenient form to calculate power spectral
densities. A more convenient form relates power spectral density to the correla-
tion function. For stationary processes W(w) is the Fourier transform of the
correlation function. We see this by substituting the definition of Ur(w) in
(7.52), which gives

W) = lim = Ur(@)UFw)

| T P
lim == F fu(t)e"“"dtf u(t)e’'de
P 2T

-T -T

T T
lim e f dt1J‘ dtzu(tl)u(tz)e"“’(’l“'l) (7.53)
T—oo 2T _T T

The ensemble averaging of u(¢y) and u(t2) is
u(t)u(ty) = Ry(ty,t2)
u(t - n)u(t- ) = Rty - 12) (7.54)

Substituting (7.54) in (7.53) we have

T T
Ww) = lim == [ dny f dty Ry(t1- tp eIt t2) (7.55)
T—w 2T o g

The double integral can be written as a single integral with the simple change of
variables,

1]

4 [l ) F=h 40

dt = dty dt' = dtp
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Accordingly, for any function g(¢y- £2) one can write

T ~T ] 2T 2T
fdfn ' drag(ty - 12) ’2—f 3 g(E)dt’
-T *-T 27 -2T+|¢l

27
f (T - E))g()dE

-2T
Using this expression in (7.55) we get
1 2T
Ww) = lim == | Q- E)R,(E)e 7 dt
Teo 2T
=27
2T
i o !El) =
= lim =— (] = e Ru(g)c /wgdf
T 2T i 2T
= _( R (£)e“kat (7.56)

—oo

Thus, for stationary random processes the power spectral density is the Fourier
transform of the correlation function.

In comparing (7.56) with (7.36) it is seen that from the definition of S(w)
we have
S(w) = W(w) (7.57)

The inverse of (7.56) immediately gives

oo

R,() = 2‘—ﬂ S(w)e’“tdew
= € r Jwk
= me)e dt (7.58)

Relationships (7.56) and (7.58), between the power spectral density and the
correlation function, are known as the Wiener-Khintchine equations.
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7.7 CORRELATION TIME-PASS BAND PRODUCT

Using (7.36) and (7.37) we consider a few sample functions of R(£¢) and corre-
sponding S(w):

R(§) S(w)
20 R(0
@ ROe S
R(0) TRO) o
®) 1 - a2g2 @
R(0) sin wok BRI o g
o 0
0 otherwise

where « is a real parameter. In each case the functions R(£) and S(w) assume
their maximum values when £ = 0 and w = 0. We (loosely) define the correlation
time Af as the time interval ~A¢ < § < A within which the value of R(£) is of
the same order of magnitude as R(0). Outside this time interval R(£) is much less
than R(0). For the examples chosen Af is approximately equal to 1/a, i.e.,
A% ~ 1/a. Similarly, we define the spectral bandwidth Aw as the frequency
interval -~Aw < w < Aw within which S(w) compares to S(0). Outside this
interval S(w) is much less than S(Q). For the examples chosen Aw ~ «. Hence
the correlation time-bandwidth product

AfAw ~ 1 (7.59)

By introducing a more exact definition of Af and Aw we can derive a
correspondingly more precise expression for AfAw. Let the spectral bandwidth
Aw be defined as

o0 oo

f S(w)dw = 2f S(w)dw = 285(0)Aw (7.60)
~0 0

Definition (7.60) specifies Aw such that the curve S(w) can be approximated by
a rectangle of height S(0) and width 2Aw as shown in Fig. 7.3). The area of the
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S(w)
~ !
! |
|
1
|
I |
| |
! |
i i
T T
-Aw +Aw

Figure 7.3 Spectral bandwidth.

rectangle is equal to the area under the curve S(w). Similarly, the correlation
time A is defined as

f R(§)dE = 2J R(¥)dE = 2R(0)AE (7.61)
e 0

Using

oo

S(0) = f R(E)dE R(0) = zl_n[ Sesjdis

the exact relation for the correlation time-bandwidth product is

AtAw = % (7.62)

Equations (7.59) and (7.62) apply to any pair of functions which are the
Fourier transform of each other. Of particular interest is their application to the
impulse response /() and transfer function H(w). The quantity Aw defines the
pass-band of the system. Af defines the correlation time or memory of the
system. The system memory is taken to be the time interval during which the
input appreciably influences the output. It symbolizes the time during which the
system responds to a unit impulse.

7.8 TRANSFER FUNCTIONS AND LINEAR OPERATORS

The relationship between s(¢) and m(r) was specified by (7.18) as

m(t) = H[s(1)]
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where H is a linear operator. The Fourier transform of the impulse response [cf.

eq. (7.38)] established the transfer function H(w) for the optimum filter as [c.f.
eq. (7.41))

Equation (7.41) is the direct result of the input-output relation

() = j h(Eyu(t - £yt

We next investigate the relationship of # and H(w). From (7.18) the
integral form of the operator equation is

oo

m(t) = j h(t")s(t - t')dt' (7.63)

Previously we had

oo

f € ER () dE

—00

Smu(w)

f e m@yult - £)dt (7.64)

Substituting m(¢) from (7.63) into (7.64) gives

Spu(w) f et f h(t'ys(t - yu(t - £)dt’

f e Wt g f h(t" YR (% - t)dt' (7.65)
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By changing the variable of integration, such that £ = ¢ +¢'. equation (7.65) can
be written as

oo

Smu(w) = “ e—jwt’h(fl)dflf e jwleu(f)d’

< —00 R

@0

H(w)Sg,(w) (7.66)

Thus the transfer function as derived from the operator relation (7.63) is the
ratio of the spectral densities S,,,(w) and Sy, (w). where we have specified the
general form of H(w) as

o

H(w) = f e n(t)dr (7.67)

—o0

Obviously, not all linear operators can be written in the form of (7.63). In
these cases the transfer function H(w) is defined to be

Smu(w)

Bey= Ssu(w)

A few simple examples illustrating this point are as follows: For simple filtering
H is the unit operator, i.e.,
m(t) = H[s(t)] = s(1)
and Sy, (w) = Sg,(w). Thus the transfer function
Hw) =1

For time-shift operators where

m(t) = s(t +4)
it is readily shown that

H(w) = ewb

The differentiation operator

m(t) = ;1% {s(t)}
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gives
Hw) = jw

whereas the integral operator

m(t) = fdr {s(1)}

Hw) = 71—

~

=1
) {50}

Sl

gives

w

Each of the above identities can be proven by forming S,,,,(w) and Sg,(w) and
applying formula (7.66).

Generalizing the above equations it can be said that if the transfer function
H(w) is a polynomial

n

H(w) = g;OCQ(jw)Q (7.68)

where the coefficients Cy are constants, then the corresponding operator can be
written as

h
. ay
H = goq <dt> (7.69)

Formula (7.69) applies only when (7.66) can be written as the ratio of two
polynomials

(7.70)

where Py(w) and Pp(w) are polynomials of degree a and b, respectively, and
a > b. If a <b the numerator is divided by the denominator giving

H(w) = Hy(w) + Hi(w) (7.71)
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~

where \
b;‘ﬂ
Hy(w) = /_;‘)C\,(/w)“ (7.72)
Q:
and the remainder
Hy(w) = J‘ hy(E)u(t - £)dg (7.73)

—oo

7.9 MONOCHROMATIC SIGNALS

The classical form of an amplitude modulated signal generated by an harmonic
oscillator is

s(t) = acos wqt + b sin wot

e cos (wot +¢) (7.74)
where
a = ecosy b = esing

Let the modulation parameters @ and b, or e and ¢, be random variables which
are independent of time and satisfy the conditions

a=5b=0 a2 = b ab = 0 (7.75)
Then waveform (7.74) can be considered as a random process. In order for this
process to qualify as a quasi-monochromatic signal the bandwidth Aw of the
modulation must be very small compared to the carrier frequency wy.i.e.,

Aw < wq (7.76)

In accordance with conditions (7.75) the stationary random functions a(t) and
b(t) have the following statistical properties

a(t) = b(t) = 0 (7.77)

a(t)a(t - §) = b(t)b(t - £) = *r(¥) (7.78)
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a(t)b(t-§) = b(t)a(r-%) = 0 (7.79)
where ¢2r(%) is the autocorrelation function for processes a(t) and b(r). By
property (7.79) there is no cross-correlation between the two processes. The
constant ¢? is determined by

2 =g =p? (7.80)
i.e., it is the mean square value of @ and b, so that

r©) =1 (7.81)

Correlation functions satisfying conditions (7.81) are said to be normalized.
Calculating the correlation function for s(¢) we have

R(§) = [a(r) coswqt + b(t)sinwgr][a(z - £) coswy(t - £) + b(z - £) sinwq (1 - £)]

c2r(€)[cos wot cos wolt - £) + sinwqe sinw(z - £)]

I

c2r(g) cos wot (7.82)
On normalizing we have for £ =0

R4(0) = ¢% = §2(r) (7.83)
The spectral density for the normalized correlation function ~(£) is

s(w) = f et (g)dt (7.84)

—oo

Its corresponding inverse becomes

r¢) = % f e/ tg(w)dw (7.85)
Thus the spectral density Sg(w) of the quasi-monochromatic signal s(¢) can be
written as

Sy(w) = f eTOtR(§)dE = 2 f e p(E) cos wok df

= —oo
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2 = S
? ‘TU e (W -wolng)dt + f e“/‘““’O’r(s)ds}

5.
= %[s(w~w0) + s(w + wq)| (7.86)

We assume that s(w) is bell-shaped with its maximum at w = 0. Therefore from
(7.86) and (7.76) Ss(w) represents two non-overlapping bell-shaped curves
centered approximately at ~wq and +wg. From (7.62) where

=
Atdw =
inequality (7.76) implies that
wpdE > 1 (7.87)

Since Af defines the variation with time of the random functions a(z) and b(¢)
condition (7.87) specifies that cos wqt and sin wgt undergo many oscillations in
time before a(¢) and b(r) change appreciably.

For the ensuing calculations we choose the form of the normalized correla-
tion function as

rg) = e @'t (7.88)

where « determines the spectral bandwidth. The corresponding Fourier trans-
form gives

L it (7.89
S(w) . (12 + wz C )
From (7.81) and (7.85) we have
L ms(c,o)a’u) =1
2n 3
which when combined with (7.60) gives
Aw = 2a (7.90)
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We now examine the optimum filter which separates the quasi-

monochromatic signal from so-called “white noise,” i.e., noise of constant

spectral density. We have
Sp(w) = Sy = const. (7.91)

For simple filtering where there is no correlation between signal and noise, i.e.,

where
s(tyn(te-¢) = 0

the transfer function is, by (7.44),

= Ss(w)
H(w) = 510y + Syw)

and

1 ej“’ELIE
N RS i 9
h(§) Zn) 1% [Sp(w)/Ss(w)] e

Our solution to (7.92) will be confined to positive values of £. since A(§) is an
even function. Representing the denominator of (7.92) as D(w) we look for the
roots of the equation D(w)=0. For w~wo we have approximately, from

(7.86),

c2a

5,
2

So(w) ~ = slw-wo) = 7 5>

2 2 (w - wy )2 + a2

where the term s(w - wq) ~ s(2wy) is neglected. Thus, the denominator

(w - wp)? + a?
Dw) =1+ 3‘,,——-0—(2);—“"

has the roots

where

g = Va? + (c2a/Sy)

T

R et .,..,tﬁ;-..pa-@w- e
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Similarly, two other zeros of D(w) can be found for w ~-wq. At the poles
w = *wq + /0 of the integrand in (7.92) the derivative dD/dw is

D _ j20S,,

dw ' 2a

where we have asserted that only the poles in the upper half-plane are important.
The contour of integration is closed in the upper half-plane and the integral is
reduced to a sum of residues. The final expression for /1(¢) becomes

2
@
h(g) = Tpe"‘m"cos wpé (7.93)

where

2 s2(z)
SRR Gt N 1
T8 T 7 5w G4

The dimensionless parameter p represents the signal-to-noise power ratio. It
depicts the extent to which the signal is stronger (or weaker) than the noise.
From the above the parameter 6 can be written in terms of « as

0 = a\/1+p (7.95)

According to (7.83) ¢2 represents the average power of the quasi-monochormatic

signal, and by (7.90) S,a is the noise power in the band occupied by the signal.
For small signal-to-noise ratio p < 1. Therefore equation (7.95) implies

0 =«

Hence, from (7.93), (7.94) and (7.88) the impulse response is

h(E) = ape € cos wo
Ry(§)
 adi) (7.96
% )
and fron (7.44) the transfer function reduces to
Sg(w
H(w) = bl (7.97)
Sn

which is in agreement with our discussion in Section 7.4.
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The pass-band established by the roots of D(w) include the frequency
intervals w( * Aw and -wq * Aw where, from (7.90) and (7.93), the spectral
bandwidth Aw is determined by the parameter 9:

Aw =

o]
>

Zavi+p (7.98)

We see from (7.98) that as the noise power S, decreases the pass-band Aw
increases. This leads to a shortening of the (memory) time 1/0 required for the
signal to be extracted from the noise, which agrees with our earlier conclusion
that for simple filtering in the absence of noise no time is required to duplicate
the signal. However, the extraction of signals in the presence of noise must be
done in a time less than the correlation time of the signal. in which case we
always have 0 > a.
The mean-square filtering error for the quasi-monochromatic signal is

i -
= e, 2_"f | H(w) 128, (w) dw

|
©“

o ij_?iz(i_
7 2] S+ Suw) ¥

I wa,_—ss(i)___ 99
c Dy | T [5,/Ss()] dw (7.99)

The integral of (7.99) is evaluated by calculating the residues associated with the
zeros of the denominator (w = *wq +j0) and the residues associated with the
poles of the numerator (w = tw +ja). Equation (7.99) becomes

Gy Sg(wq +/0) + Ss(-wq +/0)
28, 0/c?a

(3]
|

=£2 = —— (7.100)

0 \/I+p

Consider the situation where the signal is “highly™ monochromatic, i.e..
the parameter & approaches zero. Therefore. by (7.94) p then increases and by
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(7.100) €2 decreases. Effectively, the filter pass-band Aw becomes narrower and
its correlation time Ar ~ 1/0 becomes larger thereby making more effective use
of the signal. For strictly monochromatic signals «=0=w =0 and €2 =0. In
this case the infinite working time of the filter produces an infinitely small (or
zero) error. Clearly, for a finite working time the error is greater than zero.

7.10 SIGNALS OF KNOWN FORM IN NOISE

In our previous discussions we treated the signal and noise as random processes.
In the disciplines of radar and radio communications the signal is usually of
known form and is not regarded as a random process. Instead, it can be regarded
as a known function with several unknown parameters, such as amplitude or
phase. In such cases filtering must, (a) make the most reliable observation of the
useful signal, and (b) make the most precise measurement of the signal’s un-
known parameters. Consequently, a performance metric of a filter extracting
signals from noise can be the signal-to-noise ratio at the output.
Assuming the signal s(r) has a well-defined form we have from (7.1 6)

u(t) = s(t) + n(z)

where n(t) is a random process. The corresponding output is

1}

y(t) = Hlu(r)]

H(s(t)] + Hln(1)]

o(r) + n(r) (7.101)

where o(f) and n(r) are the results of passing the useful signal and noise, respec-

tively, through the filter. For s(z) we can write its Fourier transform and inverse.
respectively, as

S(w) =f (*H/“”s(r)(ll

—oo

oo

s(t) = %J‘ el S(w)dw

—wo
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Thus, the useful signal at the filter output is
ot) = _L"f /() S(w) dw (7.102)

Treating the noise as a random process we can write for n2(t) [c.f. equation
(7.48)], the average noise power at the input,

n(t) = 5= f mS,,(w)dw (7.103)
The noise at the output of the filter becomes
20 = 5 [ :IH(w)IZS,,(w)dw (7.104)
Accordingly, we define the signal-to-noise power ratio p as

2
P (. (7.105)

n2

where a(tq) is the signal value at a specified time ¢g. From (7.102) and (7.104)
the signal-tc-noise power ratio can be written as

- 2
l J e/t H(w)S(w)dw

!
b= (7.106)

oo

J [H(w)[28,(w)dw

—o0

We now look for a filter which gives the largest value of p. Our analytical
procedure will be to use the relation

y(tg) = o(tg) + nltg) (7.107)

to decide whether or not a signal is present, and make

la(to)l > Vn2(tq) (7.107a)
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by as much as possible. Applying the Schwarz inequality

o 2 o oo 2
jwt s 2a [S(w)I”
‘ e’ H(W)S(w)dw| < |H(w)I“Sp(w)dw ————dw (7.108)

s Sp(w)

to (7.106) the upper bound of the signal-to-noise ratio can be established as

1 [ I1S(w)?
JURRSS ﬁj —S:H(T)'dw (7]09)

If we let the transfer function /(w) have the form

; S*(w)
- ) [ 7 e st
H(w) = ke ™70 Si@) (7.110)

where k is an arbitrary constant, p reaches its maximum in (7.109). We have

1 [T 1Sw)P
p = 2”[00 S,(@) dw (7.111)

Thus. a linear filter with the transfer function (7.110) is the best filter among
linear filters. Further, if the noise n(¢) is a normal random process (i.e., Gaus-
sian) the filter (7.110) is an absolute optimum. Physically, (7.110) is interpreted
to mean the larger the amplitude spectrum of the useful signal and the smaller
the power spectrum of the noise in the frequency interval (w, w +dw), the more
the optimum filter will pass those frequencies. Also, from (7.111) it is apparent
that the greater the displacement of frequency spectra of the useful signal and
noise the greater the signal-to-noise ratio at the filter output.

In using filter (7.110) to detect signals of known form it is only necessary
to know the value of (7.107), i.e., the value of the output function at time t.
According to (7.102) and (7.110) we have

il 1S(w)12
oft) = Z_kﬂj e/“’(’_’o)—%idw (7.112)

n

from which it follows that

la(t)| < lo(tg)l = lklp (7.113)
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By setting & = 1 in (7.110) we see that, according to (7.111) and (7.112),

a(ty) = p (7.114)
and according to (7.105)

n2(t) = p (7.114a)
i.e., the signal-to-noise ratio gives simultaneously the useful signal and the noise
power at the filter output. In this case it can be shown that at the filter output
the useful signal is related to the correlation function of the noise according to ;

the formula

a(t) = Ryltg - 1) (7.115)

7.11 THE MATCHED FILTER

In the case where the noise spectrum is uniformly distributed over the useful
frequency band we have the condition called “white noise.” For this condition

S(w) = S5, = const. (7.116)
From (7.110) the transfer function is

H(w) = e@0s%w) (7.117)
where arbitrarily we have chosen

k=358,

Thus, for signais of known waveform wherein the noise is treated as a constant,
the filter can be matched to the waveform (or its conjugate). Therefore, it is
usually called the matched filter (or conjugate filter).

Since the signal s(¢) is real the conjugate of its Fourier transform can be
written as

S*w) = S(-w) (7.118)
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The signal at the output of the filter is, according to (7.102), (7.117) and
(7.118),

o(t) ,—'ﬂ f (W) S (w) dw

oo

5'; /9= 10) §(-w)dw f eIt g(1'ydr' (7.119)

oo oo

which, upon changing the order of integration, gives

zl—ﬂ f s(t"dr' f =101 g 5) de

1 = ' ' = .
Ef s(r)dtf /=14 10) §(o) dw

f s(t')s(t' - t+ tg)dt’ (7.120)

—oo

o(z)

Clearly (7.120) has the form

f s(t)s(t - £)dk

Earlier [c.t. eq. (F.17)] we defined the time-average or integral form of the
autocorrelation function Rg(§) as

Ry(®) = f s(t)s(z - §)dE (7.121)

oo

The integral form of Rg(§) differs from definition (7.10). Instead of taking the
ensemble average s(f)s(¢ - £) for a large number of identical experiments, we
observe a single sample function which contains all the statistics of the process.
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From (7.121) we have for an ergodic process

Ry(0) = f s2(t)dr = E (7122

o

which is in keeping with (7.48).
Substituting (7.121) into (7.120) the signal at the filter output is

o(t) = R(t~1tg) (7.123) g

ie.. the matched filter is a correlator; its response to the useful signal is its
correlation function. At ¢ = ¢ the output becomes

o(tp) = Ry(0) = E (7.124)
Khintchine’s theorem states that for any random process u(z)
Su(w) = 0

Therefore, the following inequality holds:

j s,,(w)efwidsl < % J S, (w)dew

oo —o0

1
IR()| = 5

Thus, it follows that

Rs(0) = [Ry(#) o(ty) = la(?)l (7.125)

o(to) is the maximum value of the useful signal at the filter output: this max-
imum value is the total energy of the signal.
From (7.111) and (7.116) the signal-to-noise ratio is

1 ) 2 o)
S, ,}_JS(M)‘ dw (7.126)

©
n

And, from (7.118) and (7.122) we have the identity

:;;f (S(w)Pdw = { sA0)dt = £

oo o oo
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Thus, the signal-to-noise ratio takes on the simple form

Pt (7.127)

i.e.. it is determined by the energy content of the signal and the noise spectral
density. For situations where the background noise is “constant” the only way
to improve detecting a signal of known form is to increase its total energy.

According to (7.39) the impulse response h(r) for the matched filter can
be written as

h(t) = %f e/ H(w)dw

N T
= 5 [e’“('”'O)S(—w)dw

Voo

= s(t - to) (7.128)

Thus, the impulse response of the best filter in white noise is the mirror image of
the signal, delayed by t( seconds. Therefore, by (7.23) the output of the
matched filter is of the form

o(t) = [S(t'-tﬂo)u(t')dt'

J —oo

The matched filter forms the cross correlation between the useful signal s(¢) and
the input u(t).

To appraise the operation of the matched filter we assume the useful signal
has a sinusoidal waveform and contains energy £. We specify the transfer func-
tion as “rectangular” having the following characteristics:

1}

H(w) for ~w- Aw < w < ~w+Aw

H(w)

I
o

for wp- Aw < w < wp +Aw (7.129)

- o - .. v-gm - ¥ ' - —ry 3 3

SR
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Our objective is to compare the signal-to-noise ratio of the “mismatched” rectan-
gular filter with that of the matched filter giving

L
P = S" = o
Po £
Sn

where p is the signal-to-noise ratio of the matched filter. The exercise below
will be to determine the value of a.

We specify for the sinusoidal pulse under consideration the appropriate
form

To o
s(t) = Acoswyt ey <t<7
-T; T

=0 de= e (7.130)

where wy is the carrier frequency, 4 is the pulse amplitude and Tj is the pulse
duration (or period). One can write for S(w)

f eTwts(t)dt

Tofh
Af e719t cos wyt dt

Tal2

S(w)

sin(w - wg)Ty/2 sin(w + wq)Tp/2
< ( 0)To " ( 0)70 (7.131)
w = w( wt wq

For the conditions where w7 > 1 equation (7.131) becomes

sin(w = Ty/2
S(w) = 4 o (7.132)
W~ W

Fron: (7.102) the filter output for the simple filtering specified by (7.129) is

2n

“wotdw wotAdw
oft) = 5= e/“IS(wydw + 5= e’“IS(w)dw
~wo -Aw Jwg-Aw
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1 woptAw
= -1;-] S(w)cos wt dw

wp-Aw

By substituting (7.132) into (7.133) we have

A ffrore? sin(w - wq)Tp/2
o(t) = — cos Wt ————————  — dw
m W~ w(
wo -Aw
If we impose the condition
AwTy
T A

then

sin(w - w()Ty/2
w - wq

is positive over the integration interval. Therefore

lcos wt| ————————dw < 0(0)

CwotAw < =
o <4 | i o
W= w(

wo-Aw

where

Wo+AW gin (w ~ wg)Tpy/2 L
o(0) = %f ( 0)To Sk 24 sinx

w - w m X
wo-Aw 0 0

x = (w-wy)Ty/2; v = AwTpy/2

(7.133)

(7.134)

(7.135)

(7.136)

(7.137)

(7.138)

From (7.104) and condition (7.116) the noise intensity at the filter output

is

=l
1]
2=
2
L3
fo 8
&

(7.139)
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Therefore the signal-to-noise ratio for simple filtering is

_ 00) _ 242x2

p = 5 = e A (7.140)
where
" sin x d
X = J i (7.141)
x
0
The energy of the rectangular pulse is, from (7.122),
PTG T
E= , s2Aryde = 4222 (7.142)
STl S
which. when substituted into the signal-to-noise formula (7.140), gives
x2 2EX2
e (7.143)

5 TS, Aw ~ 7S,

Forming the ratio p/py, where pg is the signal-to-noise ratio of the matched
filter [c.f. eq. (7.127)] , we have

L s el (7.144)

The ratio p/p, depends on the parameter v to the extent that the ratio is a
maximum for

v~ 215 (7.145)
or
w ~ % (7.146)
Thus
L ~ 0825 (7.147)

Py
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ie., p is approximately one decibel less than p(. Hence, the matched filter gives
a larger signal to noise ratio because its transfer function fits the signal spectrum
from the standpoint of both its bandwidth and shape (amplitude).




8
Quantized Systems-Perturbation
Theory and State Transitions

8.1 INTRODUCTION

As an introduction to some of the methods of statistical analysis we will explore
in a preliminary fashion some of the probabilistic methods of quantum theory,
particularly as the theory describes the probability of state transitions resulting
from small energy perturbations. The theory has experienced a high degree of
success in physics and chemistry, and is introduced here primarily as a method
for analysis. In the quantum picture the system is analyzed on the basis of its
energy content, which is quantized. Associated with each of the quantized
energy levels are the system states. The input to the system represents a change
(perturbation) in the total energy of the system. This change results in the
system transitioning to various different allowable energy states. The probability
of a (state) transition occurring is directly related to the perturbing energy and
the system’s allowable quantized energy levels.

There exists, however, a fundamental difference. between the quantized
system and the linear system. This difference arises from the theoretical con-
cepts governing the respective theories and is manifested in the system dynamic

159
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equations. It was seen earlier that the dynamic state equation for the linear
system is

[x) = Alx) + Blu)

which is an outgrowth of the idea of ordered input-output pairs and techniques
to attach a (state) “label” to the pairs. The “motion” of a quantized system is
governed by the Schrodinger equation

jhlx) = Hix)

which, as will be seen below, is one of the fundamental postulates of quantum
theory.

8.2 FUNDAMENTAL POSTULATES OF QUANTUM THEORY

The intended goal here is to apply the methods of quantum theory to achieve
simple rules in describing system state transitions. In describing these methods
we first examine those fundamental postulates! which importantly serve as the
basis for the theory. They are as follows:

POSTULATE A. To every measurable, real quantity F there is associated
an (Hermitian) operator F called an observable.

For a Hermitian operator to be an observable it is required that the eigen-
vectors associated with the operator span the entire space. Thus, the eigenvectors
|x;> of the observable can serve as a complete set of orthonormal base vectors
; where

(x,-lx,) = 6,']‘

Any finite state vector |x) in this space can be described in terms of the eigen-
vectors:

k) = 2 cilxy) ®.1)
l

where the c; are the expansion coefficients.

p 1. See, for example, Grossman, L. M., Thermodynamics and Statistical Mechanics, McGraw-
Hill, New York, 1969, pp. 77-87.

o g o - —— - . TR
4 et ¥ = -
- . i 5 R ..".‘,.1&-. B 4




QUANTIZED SYSTEMS-PERTURBATION THEORY AND STATE TRANSITIONS 161

POSTULATE B. The only possible values of a measurement of the mea-
surable quantity F are the eigenvalues \ of the operator F.

From Postulate A the |x;) are the eigenvectors of F;i.e.,
Fix;) = Ailx;) (8.2)
The scalar product formed by (8.1) and the ith eigenvector identifies the ith
coefficient ¢; as

i = (x;lx) (8.3)

The probability that the eigenvalue A; of F will be measured in state [x) is c}'c,-.
where ¢;[x;) is the projection of |x) along the normalized basis eigenvector |x;).

POSTULATE C. If a system is in a state represented by the vector (x) the
expected mean value resulting from a number of measurements of the measura-
ble quantity F, whose observable is F, is

(x|F[x)

= (x[x)

(8.4)

where the double bracket ¢*) enclosing a single quantity denotes the expectation
or mean value.
If the state vector |x) is normalized clearly (8.4) becomes

(F) = (xIF|x) (8.5) |
Substituting (8.1) into (8.5) yields for the expectation value

(F)

E (ci'e;)Fy
1

U}

L (et (8:6)

where the A; are the eigenvalues of F. Interpreting the coefficients c¢; of each A;
as a “weighting” factor or the probability of measuring the eigenvalue A; we can
write

= LN 8.7)
1
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where

In (8.7) we require the normalization

Liei? =1 (8.7a)
]

for
¢ =0 (8.7b)

From (8.3) it is seen that the probability P, is the square of the absolute value of
the scalar product of the state vector [x) and the ith eigenvector;i.e.,

P = lcil? = xix)?

If the system is in a state represented by one of the eigenvectors of the observ-
able F then

P = [xlxp)? = 8 (8.8)

Hence the measured value of an observable F possesses a well defined probability
of one or zero if the state of the system is an eigenvector of F. In this case all
probabilities are zero except the one measuring the occurrence of the eigenvalue
A;, which is unity.

In considering two measurable quantities, say F and G, it can easily be
shown that they can be measured simultaneously only if their associated resoec-
tive operators F and G commute;i.e.,

[FG - GF)
[F.G]

0
0

This is to say that the vector representing the system state must be an eigen-
vector of both observables. The quantities corresponding to the two operators
can therefore be aribtrarily well defined in the same state. If the operators
corresponding to the two physical quantities " and G do not commute, there
will be a dispersion AF and AG inherent in their measurement. This dispersion is
given by the inequality specified by the Heisenberg uncertainty principle:

(AF)2X(AG)?) > %<C>2

P BT TR e AT SR SE -
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where
C = j[F,G]

POSTULATE D. The dynamical behavior of the system represented by
the state vector |x) is determined by the Schrodinger equation

jh% x) = Hix) (8.9)

where h=h/[2n=1.05 X 10-27erg sec and H is the operator (observable) corre-
sponding to the classical Hamiltonian of the system.

The relationship between measurable quantities and classical concepts can
be readily established from the time development of the expectation value (F).
In view of (8.9) we particularly want to explore the time dependency of jh(F).
From equation (8.5)

Jh(F) = jh(x|F|x)

Using the product rule for differentiation and the properties of the complex
scalar product we have

4 ST TR e,

lhE (x|F|x) = (xIF/hat [x) + jhix| o [x> ]hat(xIle)

which becomes upon using the operator relationship of (8.9)

o o i ; oF
]hdt x|FIx) = (x|F|x) - (x|HF[x) + jh{x| o [x)
; oF
= (x|FH - HF|x) + ]h(xlalx) (8.10)

If the operator dF/dt is defined as

4F - 4

then equation (8.10) yields the dynamical law in operator form:

df _ 1 oF
o = wiRel + 5 (8.11)

Equation (8.11) is also referred to as the Heisenberg equation of motion.
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8.3 ENERGY PICTURE

Clearly from (8.10) and (8.11) if the operators F and H commute, and F does
not change with time, then the mean value of the measurable quantity /' remains
constant; i.e., d{F)/dt = 0. It follows that, for this situation, the probability Ic,-|2
of measuring eigenvalue A; is also independent of time. Hence the observable is a
conserved quantity. Of particular interest among conserved quantities is the
associated energy. If the observable H corresponding to the classical Hamiltonian
of the system is not a function of time (dH/dt = 0), and since H commutes with
itself, the mean or average value of the energy is constant;i.e.,

dH _ 1 oH _
ar jh[H’H] T Y

Thus for an isolated system where dH/d¢ = 0 equation (8.11) is in concert with
the law of conservation of energy.

For conservative systems general solutions to the Schrodinger equation
can be obtained in a straight forward manner. These solutions express the state
vector in terms of the (energy) eigenvectors of H. This can be seen by consider-
ing the following. From Postulate D the equation of motion is concisely

., 0 R,
}h5;|x> = Hlx)

Since ¢ does not appear explicitly in the differential equation we can look for
solutions of the form

Ix(£)) = f(t)Ix)

i.e., a form consisting of the product of a time-dependent part and a nontime-
dependent part. The corresponding eigenvalue problem is formulated as

Hix;> = Nilx;)
= Eilx;) (8.12)

where the observable H, which is the measurable energy, is independent of time.
The E; represent the energy eigenvalues and [x;) the corresponding energy eigen-
vectors. Since the eigenvectors form a complete orthonormal set the vector [x(z))
in the state space can be expanded as

X(1) = 22 ai()Ixy) (8.13)
L

bl pdiave o
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where the coefficients a;(r) are time dependent. Substituting (8.13) into (8.9)
gives

1

h o
Z <H * 75?>a,»(t)lx,-> =0 (8.14)
which, in view of (8.12), becomes
~hind
Zi:[a,-(t)b,- + l—_a?ai(z)]ix,> =0 (8.15)
The complex scalar product formed by (8.15) and the reciprocal vector {xl
yields for the kth coefficient the first-order differential equation

h d 3
a()Ey + TEak(t) =0

for which the solution is
a(t) = cke’jE’f'/h (8.16)

The coefficient ck is a constant. Thus for an isolated system where the Hamil-
tonian is independent of time the solution to the dynamical equation (8.9) is of
the form

x(t)) = 2 cie it M) (8.17)

(i

Time enters into the solution of (8.9) strictly as a phase factor. The
coefficients ¢; are constants, the |x;) are eigenvectors of the energy operator, and
the £; are the corresponding energy eigenvalues. From (8.7) and (8.16) the
probability of measuring the kth energy eigenvalue E is

P, = agay = |"k|2 = const. (8.18)

Hence for isolated systems all probabilities are constant in time. Only the rela-
tive phases of the component states change. If the system is in a given energy
eigenstate at time 7 it will remain in that state corresponding to the same energy

nvalue for all time.! This is true for the values of any other observables

1. Op. cit
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which commute with H. Thus states represented by solutions of the form of
(8.17) are said to be stationary states. However, the name is somewhat mislead-
ing. It is not the state (8.17) that is independent of time, but the probability
amplitude (8.18).

We also see from (8.17) that a stationary state has a well defined energy.
Ly is a definite energy value in addition to being the expectation value. A
determination of the energy of a system in a stationary state yields a particular
value of £ and only that value. The time-energy uncertainty relation of Postulate
C, where

AEAt > h

implies that a state with a precise energy (AE =0) is possible only if one has
unlimited time to measure same. This is characteristic of stationary states in view
of the constancy of the probability amplitude.

8.4 TIME-DEPENDENT PERTURBATIONS; STATE TRANSITIONS

In the discussions thus far we have examined mathematical problems that can be
solved exactly. In practice problems that fit the theory and can be solved exactly
are rare. One must therefore resort to methods of approximation. A powerful
metheid of approximation is found in perturbation theory. The Hamiltonian is
formed in two parts: one is large and characterizes the system for which the
Schrodinger equation can be solved exactly, the other is small and acts as a
perturbation. There are many physical problems of this kind. For example,
systems which exert weak forces on one another, or time-varying external forces
acting on a system. The system reactions can be described in terms of the
unperturbed states of noninteracting systems for which exact solutions can be
found. This technique suggests transitions among states. Thus perturbation
theory provides a connection between the observables of a system and its
stationary states.

In the previous section we discussed isolated systems for which the Hamil-
tonian was time invariant. The system state as a function of time was shown to
be

(@) = L cie it My
{

The amplitude of the kth state is
~jExt/h

ap(t) = (xgIx(1)) = cpe
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from which it follows that
* = | . A
aray = |cp|” = const.

If a time varying force acts upon the system the situation is changed. The
Hamiltonian now contains a time dependent as well as a time invariant part. The
coefficients a; depend upon time in amplitude as well as phase. Consequently, it
is possible that certain states will grow and/or decay with time. A system can
change its character under the influence of an external force; the force produces
transitions from |x;) to |x;). This implies that the system energy changes from £;
to £/; the difference being the work done on the system by the external force.

Describing an external force as an additional time-dependent term in the
Hamiltonian is, at best. only an approximation. For purposes of this discussion
we will consider only the first-order term of perturbation theory. Also, we will
assume that the time-dependent perturbation is weak and comes about as a
result of the system interacting with another system. Thus the Hamiltonian can
be approximated as

H = HO + v(r) (8.19)

where HY is the Hamiltonian of the unperturbed system and V(z) is the small
interaction or perturbation term. The superscript will be used to identify quan-
tities associated with the unperturbed system. Further, we assume the eigen-
vectors lxio) of HO are known and satisfy the relation

0,0y = £0,,0
HOIxY) = E01xD) (8.20)

where the corresponding energy eigenvalues E,-O are discrete. If the initial state at
time 7( is expanded in terms of the unperturbed eigenstates we have from (8.17)

Ix(t0)) = Zcie—iﬁito/hlxlp)
1
In the absence of any disturbance, we have for all time

0
[x(t)) = Zcic—'b" t/hlxio)
(]

B e e

Uit ek
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However, in the presence of V(¢) (8.17) is a0 longer the correct solution to the

Schrodinger equation. To obtain the proper solution we must expand [x(r)) at
every instant of time with the amplitude coefficients ¢; depending on time:

- 0
Ix(@) = 2acf)eE P D) (821)
! i

The probability amplitude of finding the system in the kth unperturbed state is

-0
0 = xQix(eyyel Bt (8.22)

To readily determine the manner in which state transitions occur we ex-
amine the time dependency of cg. Substituting (8.21) into the equation of
motion

jh%lx) = Hlx) = (HO+ V)|x)

gives

j 50 g0
th<—g—tc,-(t) =3 E,-Oc,.(:))m,.")e TEC = 3 eeyMixOy e TE
1

i

Forming the scalar product of the above with (xkOI results in

deg(t o) 0
(fh :t( ) + Ekock(r)> ¢ Bk th - Zc,'(t)(x,?lHolx,!’)e"’h‘ th
{

to
>
~

weo
+ Loy xdvixde it (s.
i
Since the IxiO) form an orthonormal set Eq. (8.20) gives

which reduces (8.23) to

20 -0
ihgick(’) = LeinxQivixe i E it/
1

L cift) Ve BB (8.24)
1
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where
Vei = IV (8.25)

Equation (8.24) is a system of simultaneous linear homogeneous differential
equations. It expresses the equation of motion in terms of the eigenvectors of
the unperturbed Hamiltonian HY. In matrix form (8.24) can be written as:

P -E)t/n

il 58 Nae )

EP-EDN

Ll = | et
/h ar| €2 Vaye (5]

As yet no approximations have been made in arriving at (8.24). It is in the
solution of this complicated set of equations that approximations are invoked.
The solutions to (8.24) depend highly on the initial conditions. For simplicity it
is assumed that at the initial time £ = -oo the system is definitely in one of the
stationary states of the unperturbed Hamiltonian, say the ith state. We want to
examine the probability of the system transitioning to state k. We assume that
HO has discrete energy levels. Thus the initial conditions for the time-dependent
probability amplitudes become

ci(-) = 1 cr(-0) = 0 (8.26)

We begin our solution to (8.24) through successive approximations. Substituting
in (8.24) the initial values of the coefficients ¢; we have at time ¢ =~

i(FO_p0
=L eg(t) = Vige ! (8.27)

Equation (8.27) is only valid for ¢ such that
ex(t) < cift) ~ 1 (k #1)

We again make use of the initial conditions (8.26) to integrate (8.27):

ooy
] () 0_p 0y
ety = = | Vige EE g e (8.28)

w0
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For small perturbations the c¢x(z) may remain small throughout. After the per-
turbations have stopped the system settles down to constant values of ¢y
evaluated at r = +oo:

s I
ck(t)=~% j Ve E B g (8.29)

—o0

From formula (8.29) it is seen that a system influenced by a time-dependent
perturbation makes transitions to other energy eigenstates of H0. The quantity
|cx(2)|2 defines the transition probability from state i to k. it is proportional to
the square of the absolute value of the Fourier component of the perturbation
matrix element Vi;, evaluated at the transition frequency wg;jsie.,

e 2
i s
lex ()% = “;{f Vige kit dt

—00

where wy; is deduced from the relation
Wi = 2nf
- £
h

If the system is initially in the higher energy state k the transition prob-
ability to the lower state i is, from (8.29),

o

] 5
(=) = -+ f Vig ot e

—00

It can be shown that V is a Hermitian perturbation operator, and that wy; =
~wjk. Thus it readily follows that

(=) = ~¢(=) (8.30)

The two transition probabilities are equal. Property (8.30) is the condition for
detailed balancing. The energy difference E = hwy; is transferred to the radiation
field of the system.
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85 CONSTANT PERTURBATION

As a matter of practical interest we consider the case where V is constant or
varies slowly over the period 1/wg;. The system is in an initial unperturbed
eigenstate Ixio) at time ¢ = 0 and then subjected to a weak perturbation which
persists at some near constant value. In keeping with our previous discussion the
time development of a system with Hamiltonian H = HO + V can be conveniently
descrit 2d in terms of transitions between eigenstates of the unperturbed Hamil-
tonian HO. The approximate equations (8.27) apply:

L d s
horcp() = Vyge™mit

Treating V as a constant and specifying the initial and final discrete states as /
and &, respectively, integration of (8.27) gives

xQvix® ,
Gl — -y
EQ- E|
Vai :
= —H (1~ efenity (8.31)
By - &

where

cx(0) = 0, ci(0) = 1, k # i

The probability that the system, in the initial state i at time ¢g = 0, will be in the
final unperturbed eigenstate k (k # i) at time ¢ is

4|V .|2 t
lex@)12 = —2__ gin2 <°”“ > (8.32)
&L~ EPY

Equation (8.32) is illustrated graphically in Figure 8.1. It is a periodic function
of ¢ with a period equal to m/wy; and a peak at wy; = 0. The expression is valid
only as long as ¢;(t) can be approximated as c;(¢) ~ 1, during which time the
transition probability to states where E,? S Iz}n remains small for weak perturba-
tions. The probability of finding the system in state k is small unless the energy
of the kth state is close to the energy of the initial state. However, transitions to

g

T T
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I_.‘u IA”
Figure 8.1

states where [:‘,? %It‘io have an important property. When I:,:.' ~ I-',“ equation
(8.32) can be approximated as

hz‘.l',\,nlﬂ (8.33)

‘Ck(l)lz =

Thus the transition probability to the kth unperturbed eigenstate increases
quadratically with time. This has special importance when the states in the
neighborhood of the initial energy are very closely spaced and constitute a near
continuum.

It is not physically possible to measure [cx|2 for a single value of k. The
classical measurement is of the rotal probability that the system made a transi-
tion from an initial to a final state. We define the total transition probability to
all possible final states as

Transition probability = ;lck(t)l2

where the summation extends over all final states under consideration. For a
quasi-continuum of energy states per unit energy level we introduce the density
of final unperturbed states denoted by p(£). The quantity p(£)dE measures the
number of final states in the interval dE containing energy £. The total transi-
tion probability into these states is determined by multiplying (8.32) by
p(EkO)dEkO and integrating with respect to dEkO:

5 1= coswy;t
flck(t)lzp(l:’,g)db‘,? = Zfinilz WP(@?N@O (8.34)
ok = B

where

Wail = KxQIVIxD)|
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The time rate of change of the total transition probability, w, is

20

d
w = k(DR p(EQ)E = Y

sin wg it
i Vil == PEAE (8.35)
In analyzing (8.35) Vi, and p are reasonably constant over a small energy
range 6[:}0 near E,-O. However, sin wg;t/wy; oscillates rapidly in this same energy
interval for all 7 satisfying the relation

t > h/sE] (8.36)

and has a pronounced peak at I:k =k 0 . Clearly those transmons which tend to
LOHSCTVC the unperturbed energy are dommant Also SE is usually comparable
to E, . Thus h/(‘iE,0 is a very short time. Hence there is a large range of  where
(8.36) is fulfilled yet the initial state i is not appreciably depleted. During this
time (8.35) can be approximated as

- f ekORpEDED = 21Vl EY) f “ dor; (8.37)

Under the conditions stated the transition probability per unit time becomes
= 2y o@D 8.38
w—hlkilp(k) (8.38)

Equation (8.38) shows a constant rate of transition. This result comes about
because we summed over transitions which conserve the unperturbed energy
(Ek0 = Eio) and transitions that violate this conservation. From (8.33) it is seen
that the transition probabilities of the former type increase quadratically with
time, whereas from (8.32) it is seen that transitions of the latter type are
periodic. The result is a compromise between these two and the transition rate is
constant. Result (8.38) has been termed by Fermi as the golden rule of time-
dependent perturbation theory.

8.6 EXPONENTIAL DECAY

Our discussions on perturbation theory was centered around the approximate
solutions to equations (8.24):

hLewn) = Lt st
1

g
™

v
R L B -.{f\x'--»ﬁ e TR « oA fre
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From these equations it was seen that if Vk; # O transitions from an initial state
to various available final states occur. The probability that the system will make
a transition in time interval between ¢ and ¢ + dt is equal to wdt. By the condi-
tion for detailed balancing, (8.30), these final states contribute to the probabil-
ity amplitudes of the initial states through a feedback process. As the amplitudes
of the final states grow, they do so at the expense of the initial states, since
probability is conserved. Because of the different frequencies wy; of the feed-
back process the contributions made by the amplitudes ¢ to amplitudes c; are
all of different phases. Thus if there are many available states k, forming a
near-continuum, the contributions made by these states tend to cancel. This
destructive interference in the probability amplitude is interpreted as a gradual
(exponential) depletion of the initial state.

It is inferred above that the probability of finding the system at time 7 still
in the initial state is proportional to exp(-wt). This is the exponential decay law.
To derive the exponential decay law we no longer consider ¢;(¢) on the right-
hand side in (8.24) as a constant. However, in our approximation we will con-
tinue to neglect all other contributions to the change in cx(r). Equation (8.24)
becomes

thdt‘ck(t) = Vyielt') ek’ k#i
TN o
k(@) = Vi J ci(tye! kit dr' (8.39)
0

where ¢ (0) =0 for k # i. The prime identifies # with ¢;. However, by reciprocal
manipulation of (8.24) it can be shown that the equation of motion for c(z) is
rigorously

s ol Tt
mgredt) = LV + Vi) (8.40)
Substituting (8.39) into (8.40) gives
d 1 : it i
260 = 'ﬁg,-w’“"zf ci(t)elwrilt=0gp" - HVici(t)  (841)
0

Assuming that the pertinent final states are in a near-continuum with a density

.
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of states p(EkO) the sum can be replaced by an integral extending over all
possible transition frequencies. Equation (8.41) becomes

oo t .

d 1 o ' i (t'- ' ]

i = ﬁf |Vki|2p(bl?)dwkif ci(t)elkit=0gy" - 3 Vieit) - (8:42)
Lo 0

Equation (8.42) is a differential equation of the Volterra type. It can be approxi-
mated by the simple equation!

(%ci(t) A (—% = %6[:‘,.0)0,-(1‘) (8.43)

where 81‘3,-0 is the shift of the unperturbed energy level E,-O due to second-order
perturbation.2 With ¢;(0) = 1 equation (8.43) yields

ci(t) = exp (— % = %5&‘,-0) (8.44)

which describes the exponential decay .

We next examine the probability that the system has decayed into state k.
Substituting (8.44) into (8.39) and integrating:

l ’ '
ex(®) = —%Vk,-fexp [“F E,.°+aE,.°—E,?—jh% t]dt
0

b :
R = exp(—h%t) exp {— %(E,-0 +615iO~E,?)t:|
LW
EQ - (0 +5EQ) + jh ]
3
s - The probability |cx|2 that the system has decayed into state k becomes
P r £ +5ED - 0
; 1 - 2exp 3t cos|————— ¢ + exp(-I't)
lekl? = Vgil? (8.45)
. < (g0 _ [0 oy , I° .
. Ey - B - 8E7)" + |

1. See V. F. Weisskopf and E. P. Wigner, Z. Physik, 63, 54 (1930).

2. The reader is reminded that our discussion on perturbation addressed only first-order
terms. An exception is made in the derivation of equation (8.43).
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where I'=hw. For ¢ long compared to the state lifetime 1/I' the transition
probability is approximated as

Viil?
lexl? = A (8.46)

g~ BV -8B + —

Equation (8.46) is a bell-shaped curve. It has a pronounced peak at those final
state energy levels E,? equal to E,~0 + 6E,~0. The width of the curve is equal to

hw.

r—
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Appendix A

DIRAC DELTA FUNCTIONS

The delta function 8(¢ - @) is a mathematically improper function having the
following properties (in one dimension):

5(t-a) =0 for§ # a (A.1)
f S(¢-a)dt = 1 if region of integration (A2)
s includes £ = a
f 6(¢-a) =0 if region of integration (A3)
—o does not include £ = a

177
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Higher order delta functions are defined as the derivative of 8(¢ - a):

d"s(t-a)

4
dr" i

8"¢-a) =
The delta function of another function can be transformed according to the rule

(/) = ;‘;b(s ~ k) (AS)

dg

where flEp) =0. For an aribtrary function f() the sifting property of delta
functions provides for the integral equations

f f®)8(E - a)dt = [(a) (A.6)

f f(®)8"(¢-a)dt = (-1)'f"(a) (A7)

It is difficult to physically imagine the delta function or the unit impulse
as it is also referred-to. Qualitatively, it can be thought of as a small pulse of high
magnitude and infinitesimally small duration (see Fig. A-1). We require that as
the peak of the curve gets higher, the width gets narrower in such a way that the
area under the curve remains constant (unity). Thus the unit impulse 8(¢) can be
regarded the limit as A% ~ 0 of the pulse p(¢) having width A£ and height 1/A%.

Figure A-1 Unit Impulse.
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Appendix B

RESOLUTION OF CONTINUOUS-TIME SIGNALS
INTO UNIT IMPULSES

An arbitrary signal wu(f) can be approximated in any finite tiine interval
=-T<t<T by a finite number of unit pulses of width Af occurring at times
t=kg, where k=+1,%2 .. tN=T/At. Fig. B-1 illustrates the idea. Since the
height of the unit pulse is 1/Ag, the pulse at ¢ = kA is multiplied by u(kAf)AE
thereby resulting in the amplitude u(z). The approximation of u(t) can be
written as

N
we) = L ulkap)sp(i-kag) (B.1)
= Algmoz u(kAE) AL p(t - kAE) (B.2)
N—o

where p(¢) is defined in Appendix A. In the limit as A - 0 and N ~> o= the pulses
become impulses and the summation becomes an integral. Thus the approxima-
tion becomes exact. We have

T
u(r) = f“(i)ts(t'é)dé (B.3)
=T

over the finite time interval (-7,7). Extending the integral over the entire time
domain defining u(?), i.e., letting 7' > oo,

ult) = f w()(t - £)de (B4)

—o0

Thus, any continuous-time signal «(¢) can be resolved into a continuum of unit
pulses. It follows that the response of a linear system to excitation u(t) can be
readily found if the response to the unit impulse is known. Hence the unit
impulse response completely characterizes the system.
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W) d

0 A 20f ... oave EAE
Figure B-1 Approximation of u(t) by unit impulses.

Appendix C
DISCRETE-TIME STATE EQUATIONS

From (2.1) the standard form of the nth order difference equation can be

written as
agy(k) +apk-1)+ ...+ ak-n) = buk=-1)+ ...+ beu(k - s)
(@g +@ A"+ .+ @, A7) k) = (0 A7+ L+ b A ulk)
where A is the linear advance operator defined for any interger » as
A*f(k) = f(k +v)
Introducing the variable »(k) where
(ag*+ a7+ . a, A7)o(k) = uk)

and

(b A7+ by A2 4+ b A )0(k) = (k)

(C.1)

(C.2)

(C.3)

(C4)

(C.5)
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equation (C.2) gives

v(k) = ai |utk) - a,v(k - n) - a,_k-nt - ...-apk-1)] (C.6)
0
Specifying the elements of x(k) as
x (k) = v(k -n)
X2(k) = v(k—n+l)
x, (k) = v(k-1) (C.7)
we can write
x((k+1) = x,(k)
X2(k+ 1) = X}(k)
X, ((k+1) = x, (k)
1
x,(k+1) = 71; [u(k) - a,x (k) = ...~ ayx, (k)] (C.8)
In matrix form (C.8) becomes
x(k +1) = Ax(k) + Bu(k) (C9)
where
‘ i 0 1 0 0 g 07
. 0o O 1 0 0
t - A= B = (C.10)
. P i - oL
L ap ap 4o Lao
From (C.5) we have
k) = bk = 1) + byo(k-2) + ... + bo(k = s) (C.11)
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Substituting (C.7) into (C.11) gives
(k) = byx, (k) + byx, (k) + ... + bx,4y (k) (C.12)
or, in matrix form,
y(k) = Cx(k) + Du(k) (C.13)
where
€ =t . bl D=0 (C.14)

Matrices (C.10) and (C.14) are not unique. They are one of a variety of ways to
represent (C.9) and (C.13).
C

Appendix D
TRANSFORMS

Listed below are = transforgs of some of the more commonly used mathemati-
cal functions:

SIfK)] = Fi) = gof(k)Z"k k>0
zld] = ]__la?:j iz > lal
E[eiwk] = 1 lz| >1

1 - elwz 1

1 - 27 cosw

Zlcoswk| = : = Lzl >4
I'= 22"cosw + 27°

P 2 Lsinw

Z [sin wk] = 1 3 |z] > 1
1 = 2z cosw * 2
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2wl = (-2 reo
21
Z[k] = G- Izl >1
Z[k?) = % lzI > 1
2K = -log(1-z7") k>1, (z1>1
Z[%] = ez 21 >0
Z[fk+1)] = z[FE) - £O)]
Z[fk-m)) = z™Fz)
2l rw)) = Fa'2)

Z transforms involving difference operators can be written according to
the rule

Z[Af(K)] = (z-1)F() - zf(0)
Z[-afk)] = (1-z7HF@)

where Af(k) is the forward difference operator defined as
Af(k) = f(k+1) = f(k)

and -Af(k) is the backward difference operator defined as
-Af(k) = f(k) = f(k-1)

The inversion of the Z transform can be accomplished in a variety of
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ways. Listed below are a few elementary transform terms useful in expansion by

partial fractions:

Az)

—

z
@-a)?

z(z +a)
(z-a)

2(z2 + 4az + a?)
@-at

Appendix E

Time sequence

1. F(z) converges |z| > a

“k‘llk>l

kak=1|,
K2k Ly

k3ak—l|k>1

2. F(z) converges |z| < a

-gk-1 |k<0

~kak-1 ‘k<0
—-k2gk-1 lk -

~k3gk-1 'k<0

ANALOGOUS QUANTITIES OF CONTINUOUS-TIME
AND DISCRETE-TIME SYSTEMS

QUANTITY CONT.-TIME SYSTEM DISCRETE-TIME SYSTEM
Fundamental _ At = Ak
matrix RC . )=
Transform of &) = G1=A7] &) = (1 - Az Y

fundamental matrix

Impulse response
matrix

Transfer function
matrix

H(t) = C®(1)B + D5(r)

H(s) = C®(s)B + D

H(k) = CB(k-1)B (k=>1)
H(k) = D (k=0)

Hz) = Cz 'd@z)B + D
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Appendix F
STOCHASTIC PROCESSES

Assume that a given experiment is performed on a system in which outcomes {
are measured (see Figure F.1). Let the outcomes ¢ form the space S. Associated
with S are subsets called events and the probabilities of these events. To every
outcome ¢ we can assign the time function u({,#). The set of functions {u(,7)},
one for each ¢, is called a stochastic process. For a specific outcome §; the
expression {u(5;,£)} is a single time function. For a specific time #;, {u($,7)}
depends on ¢ and is a random variable. {u({;,#;)} is a number. Where it is
understood that ¢ is the random variable of the random process {u(,#)} we shall
use the notation u(t) to represent the stochastic process:

{u@.n} = u@) (F.1)

The notation u is used to distinguish a sample function of a random process
from the function u established in Chapter 1.

By repeating the experiment n times we obtain n sample functions as
shown in Figure F.1. For a specific instant of time f; we observe the values { <a
and denote this total number of trials as n,(a). Accordingly, we establish the
distribution function F(a;t) as:

. na)
F(a;t) o
= P{u(,t;) <a} (F.2)
{u(t, 0} ;(h.f,) ' Gota)
u(y.0)
' |
] (§5.41) ($3.1,) )

|
| @0 e u(ty.)
:(:,,,:,) | 6,00
W u($,.1)
L -

I
h L6}

Figure F.1 Sample functions of a random process.
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H#(a;1) is the probability of the event {u(f,#;) <a} consisting of all outcomes ¢
such that at time #; the functions u(z) do not exceed the value ¢ =a. Equation
(F.2) expresses the first order distribution of the process u(f). The density of
F(a;t) is, simply,

0F(a;t?) -
# = f(a;?) (F.3)

Similarly, given two instants of time ¢; and ty where the corresponding
values of { are ay and a, respectively, we form the joint distribution function
F(ay.a3;11,t) as follows:

Flay,az;t1,t2) = P{u(t)) <ay,u(ty) <az} (F.4)

Expression (F.4) is the second order distribution of the process u(t). The corre-
sponding density is

0F(ay,a3;11,12)

aalaaz = f(al'az;tl’tZ) (FS)

Although it is not entirely correct we will state that for “practical” pur-
poses a real stochastic process can be statistically determined by its nth order
distribution function

Flay,a2,...an;t1,t),..,ty) = Plu(t)) < ay, u(ty) <az,...u(t,) <ap}
The nth order density
f@y,az,....a55t1,t2,...,t,)
is determined by differentiating with respect to all variables a;(i=1,...,n).

The mean value of the process u(t) is the expected value E{u(t)} of the
random variable:

E{u(n} = E{u,n}

u(®)

= f af(a;t)da (F.6)

where f(a;t) is the probability density function associated with the value ¢=a,
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and f(a;t)da is the probability of finding the value @ within a + da. Therefore, it
must follow that:

f”f(a;t)da =1 (F.7)

The auto correlation R(ty,t3) of a process u(z) is the joint moment of
{u(t, 1)} and {u*@, 12)}, ie., of u(zy) and u*(t2):

R(ty.12) = E{u(tp)u*(t2)} = u(ty)u*(tz)
= Ry(t1,12)
= f ayay flay,az;ty,t7)dayday (F.8)

where * denotes the conjugate. For real processes u(f) = u*(¢).

A stochastic process is said to be stationary in the strict sense if its statis- !
tics are independent of a shift in the time origin, i.e., u(¢) and (¢ + &) have the |
same statistics for all 8. Similarly, u(t) is said to be stationary in the wide sense if
its expected value or mean is a constant and its autocorrelation function depends
only on £y = ty:

E{u(r)} = u(t) = const. (F.9)

R(t1,t2) = R(t2 - 1) = R(E) = E{u(t - u(t)}

L}

u(t - Hu(r) (F.10)

where it is understood that t establishes a fixed time and £ varies over the time
interval of interest.

The process u(t) is said to have uncorrelated, independent or orthogonal
increments if u(z;) and u(z;+1) is a sequence of uncorrelated, independent or
orthogonal intervals.

Given two real or complex processes u(r) and v(t) the cross-correlation of
the two processes is defined as

‘ Ry (t1.12) = E{u(t))v*(t2)}

u(t))v™(r2) (F.11)
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The two processes are said to be orthogonal if

Ry (t1,t2) = 0 (F.12)

Similarly, the two processes are uncorrelated if their cross-covariance Cy,, is
zero, i.e., where

Cun(t1:t2) = Ryo(ty,12) - E{u(e)}E{2*(r2)} .
Ruv(’l"Z) o 'Z(‘T)E)

=0 (F.13) }

It follows that for two processes to be uncorrelated
Ryy(ty,12) = é(_fl—)é(_g) (F.14)

i Lastly, the two processes are independent if [u(ty),...,u(t,)] is independent of
: [(2}),....2(tx)] forany ty,....tn.t1,.... tk-

A real stationary stochastic process u(r) is said to be ergodic if all of its
statistics can be determined from a single sample function u(§;.¢). Since many
statistical parameters can be expressed as time averages it can be said that u(z) is

[ ergodic if the time averages are equal to the ensemble averages. i.e.. if

& W@t = (u@) = E{u@.n} = E{u(n} (F.15)

where (u(§;,r)) is the time average of the sample function u(§;.r). We imply in
(F.15) that the statistics for u(¢) are the same for all sample functions u(g;.r).
Therefore,

(u(§.0)) = Cu(t)

Below we examine some of the conditions under which (F.15) holds true.
Given a stationary stochastic process u(t) the limits

t

gt i :
(u(t)) = rhfl 3T _’g(t)dl (F.16)

< 1 t
R() = r"l'lﬁ ] u(t -~ g)u(tyde (F.17)

!

g
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where T is the interval (~t,¢), define the mean and autocorrelation as time
averages. Form the ergodicity theorem every function u(§, ;) in (F.16) defines a
number. Thus, <u(¢)) is a random variable. The random variable (u(¢)) is equal to
the constant E{u(#)} =u(?) only if its variance is zero. To determine this
variance we form the finite average

t

(o) = % u()dt (F.18)
-t

which has the mean ;
|
it |
()} = 3= f E{u(d)}de ;
_t |

Y
=57 ) u(t)de (F.19) i

On forming the second moment E{|(u(f))|2} it can be shown that the variance
02 of the time average (u(t)) is

o2

1 2t E =
7_/; (1 3 2_7-) [RE®) - lu()l*]dk (F.20)

E{Ku@®?} - lu@®? (F.21)

If (F.20) tends to zero as T — o then u(¢) is ergodic with respect to its mean.
Thus,

u(r)) = E{u()} = u()

Using (F.17) it can be shown, in a manner similar to that above, that the
process u(t ~ £)u(t) is ergodic with respect to its autocorrelation function

{5

= T i
‘ RE) = }TL T _’li(f Eu(r)dt (F.22)
= E{u(t- Hun)} = u(t-Hu(®) (F.23)
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if the limit
Sl L] i 2
Tli{g _T—j(; (1 T ﬁ) [R(r) - R*(¥)]dt = O (F24)
where
R(r) = E{u(t +£+ n)u(t + 1yu( + Hu()} (F.25)

The power spectrum or spectral density of a process u(t) is the Fourier
transform S(w) of its autocorrelation function R(§):

S(w)

FIR®)

f R()e kg (F.26)

—00

From the inverse transform R(£) can be expressed in terms of S(w) as
RG) = zin f " Sw)e de (F.27)
Setting £ =0 in (F.27) gives
RO) = 5 f Sw)de = E{u®?) > 0 (F.28)
The power spectrum S(w), as a time average (ergodicity) of the process

u(t), is defined as the limit

2
(F.29)

t
S(w) = lim s j u(t) et dg
T—o 2T ¢

of the random power

2

S@w) = 5=

= (F.30)

t
f u(r) 7k d

=i

For (F.29) to hold true we demand that S(w) tend to S(w) and its variance tend
to zero as T —> o,
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Probability
amplitude, 161
density, 186
joint distribution, 186
state, 91
state transition, 91, 172

Quantized system, 159
Quantum postulates, 160-163

Random processes, 123-126, 185-190
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forced system, 116
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probability vector, 91
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State, (cont’d.)
transition matrix, 41-42
transition probability, 90
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fixed discrete-time, time domain, 78
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Time,
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invariance, 32-33
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Variation of parameter, 69, 99
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